论文部分内容阅读
金属纳米结构提供了控制纳米级光的可能性,大多数可能的应用,如纳米天线、纳米级波导和超材料,这些应用都是基于纳米结构局域强电磁场的能力。金属表面等离激元共振是纳米颗粒中传导电子的集体振荡,它可以大大增强局部电磁场。但是,目前对于等离激元的研究,大多数都是采用数值仿真的方法进行研究的,这种方法作为一种数值实验的手段,但是无法解析地给出具体各参量之间的联系,如几何结构参数与共振频率之间的相互关系等。本文我们围绕等离激元共振的主题,介绍了等离激元及其共振的基本性质,根据等离激元共振频率会随纳米结构的形状,几何尺寸和周围介质的变化而发生显著变化的性质,很容易地将它们用含有电阻,电感和电容(RLC)元件形式的集总电路来等效建模。具有分布式电感和电容元件的电路可以捕获麦克斯韦方程中的大部分物理量,该电路模型提供了很好的解决方案,并可以揭示可能隐藏在精确分析解决方案中的物理。 本文首先详细介绍了矩形金属纳米棒等离激元的“电路化”过程,在光激发下,金属纳米结构表面上积累电荷而产生电势能;同时电子运动的动能可以通过动态电感产生;而电流的运动产生磁场,可以用法拉第电感表示。在准静态下,结合欧姆定律,我们分析得到了能够描述其共振频率特性的解析方程。我们还利用微波工作室建立模型,进行了数值模拟仿真。将数值仿真的结果和我们分析结果进行了比较,发现它们可以匹配的很好,说明了我们理论的准确性和电路模型的有效性。随后,我们将模型扩展到L形纳米棒。虽然L形纳米棒等离激元共振已被解决,但与我们的解释不同。尽管数值有细微的差别,但只有电容和电感略有改变,矩形纳米棒等离子体共振的主要特征可以很好地保持,并且我们还测试了具有不同尺寸,形状和外围介质的矩形纳米谐振器,进一步证明了我们推导的表达式的有效性。 其次,我们将前面的理论推导推广到单层结构化石墨烯上,由于石墨烯具有类金属性,所以单层纳米结构石墨烯依然可以方便地通过电感(L)和电容(C)形式的集总电路元件进行类比。在准静态下,结合欧姆定律,我们分析得到了单层结构化石墨烯等离激元共振频率的解析表达公式。我们对其进行了数值模拟仿真,并将数值仿真的结果和我们分析得到的结果进行了对比分析,发现它们具有很高的匹配度,进一步说明了我们理论的准确性和电路模型的有效性。通过该公式能够精确地判断出石墨烯等离激元共振频率随着周围介质、它自身几何尺寸和费米能量的变化情况,这为石墨烯等离激元谐振器的调制提供了方便。 最后,利用等离激元共振耦合和局部磁场增强的特性,我们设计了一种磁场均匀增强的分段式近场光学天线。该天线主要由基底和金属结构两部分组成,基底材料我们使用的是MgF2,金属结构由内外两个腔组成,且每个腔臂都是分段式的,分段式可以实现内外腔的反向能流运动,以实现内腔区域内磁场的均匀增强。