【摘 要】
:
野外火灾的发生,每年都会造成巨大的经济损失甚至危害人类的生命安全。由于野外森林面积大,环境干扰强,导致与传感器相关的火灾检测技术具有成本高、检测范围有限以及易老化等缺点,因此并不适用于野外火灾检测的场景。然而,随着视频监控技术的发展和相关技术的普及,针对野外火灾检测的研究逐渐开始向视频检测和识别的方向发展,这使得动态烟雾检测技术具有重要的研究意义。为了尽可能的扩大野外监控视角及范围,监控获取的须是
论文部分内容阅读
野外火灾的发生,每年都会造成巨大的经济损失甚至危害人类的生命安全。由于野外森林面积大,环境干扰强,导致与传感器相关的火灾检测技术具有成本高、检测范围有限以及易老化等缺点,因此并不适用于野外火灾检测的场景。然而,随着视频监控技术的发展和相关技术的普及,针对野外火灾检测的研究逐渐开始向视频检测和识别的方向发展,这使得动态烟雾检测技术具有重要的研究意义。为了尽可能的扩大野外监控视角及范围,监控获取的须是远景图像。当火灾发生时,最先出现在监控范围内的特征是烟雾。因此动态烟雾检测方法的研究对火灾预警和救援响应都具有十分积极和重要的作用。
由于视频烟雾检测至今没有统一的数据集,因此本研究首先收集和整理烟雾数据集,该过程对烟雾图像进行筛选、剪裁、归一化等处理形成数据集。在对烟雾图像的缩放过程中,为了尽可能的避免烟雾图像在缩放过程中出现块状失真或因“马赛克”而导致的动态烟雾识别效果不理想的情况,采用最邻近插值算法、双线性插值算法、双三次插值算法等方法进行块状失真抑制,通过实验测试,得出双线性插值算法比其他两种算法在烟雾图像抑制失真方面更具优势,因此可以将双线性插值算法作为动态烟雾图像检测的缩放算法,在保证实时检测效果的同时降低漏检率。
其次,在提取疑似烟雾区域算法研究中,发现采取高斯混合模型或帧间差分法等传统方法在提取动态烟雾区域时,往往需要再通过手动特征选取来确定疑似烟雾区域。研究表明,烟雾持续出现时,传统的高斯混合模型会将烟雾区域判定为背景区域,从而造成漏检现象;而采用帧间差分法提取的运动区域会出现空洞现象。因此,本文利用传统光流法的特性,对视频烟雾图像角点进行光流估计并结合视频块运动方向估计法以提取疑似烟雾运动区域,本文将角点光流估计与基于视频块运动方向估计法相结合的方法,在提取疑似烟雾区域中,可提高烟雾检测的准确率。最后,本文通过对识别模型的分析,选择卷积神经网络作为烟雾检测的识别模型,实现了对动态烟雾的实时检测。
其他文献
随着指纹识别技术的应用越来越广,人们对其识别效率和准确性要求越来越高,而现实中受采集环境或自身皮肤状况影响仍存在大量低质量指纹图像无法得到有效识别。现有低质量指纹图像识别算法以图像增强为主,在一定程度上能减少伪细节点数目,但经过特征提取后仍会存在大量伪细节点,最终导致整个指纹识别系统的性能下降,使得及时、准确识别低质量指纹图像成为目前亟待解决的一个问题。本文提出一种低质量指纹图像识别算法,该算法主
随着社会的发展和通信与信息处理技术的不断进步,生物识别技术与民众的信息安全联系越发紧密。声纹识别作为生物识别技术的一种,受到越来越多的关注,被广泛应用到手机支付、智能终端、医疗服务以及刑事侦查等领域。但是由于声纹识别的研究较短,所以仍然有很多问题尚未解决。在提取说话人的声纹特征时噪声会使说话人语音频谱发生畸变。传统自然语言处理模型由多个步骤组成,每个步骤是一个独立任务,其结果好坏会影响下一个步骤,
随着软件的规模和复杂程度的不断增加,在软件开发过程中引入缺陷的可能性越来越大。而软件缺陷的存在可能会导致软件无法正常运行,甚至会危及人们的生命和财产。如果能够在软件发行之前发现缺陷,就可以合理有效地分配时间,降低成本和提高软件的质量。在实际的开发中,通常需要预测一个新的项目,或者项目所拥有的标签数据很少,在这种情况下,异构项目的软件缺陷预测应运而生。近年来,迁移学习方法的引入,解决了异构软件缺陷预
在图像处理领域,目标检测算法已经成为了人们的研究重点,并在人类生活中有着广泛的应用。但是现有的算法仍存在一些关键问题。一方面,卷积分类网络是目标检测算法提取图像特征的基础。在提取图像特征时,卷积分类网络自身参数规模大、模型计算复杂。另一方面,被检测的目标对象存在着尺度、大小的多样性,算法对于复杂场景的目标不能有效的识别。本文从理论与地基应用出发,针对存在的问题进行了深入研究,提出了有效的解决方法。
在非协作条件下,通信信号的调制方式识别和参数估计是信号得以正确解调的前提。如今通信环境日渐复杂,信号的调制类型逐渐多样化,这会加大信号调制识别和参数估计的难度。随着计算机算力的提高,在人工智能领域中,深度学习算法渐渐崭露头角,开始在不同的领域得以应用。目前,将深度学习技术应用到调制识别领域已成为该领域的主流研究内容。因此,本文利用深度学习算法对数字信号调制方式的识别和参数估计进行了深入研究,主要研
近年来,卷积神经网络(CNN)在高光谱图像分类领域被广泛应用,其中3D-CNN可针对高光谱图像图谱合一的三维数据特点,同时提取高光谱图像的空谱联合特征,已被证明是一种有效的分类方法。但在运用3D-CNN进行高光谱图像分类时还存在以下问题:1.基于3D-CNN的分类方法需要一个大规模标注的数据集来训练网络,样本数量不足会导致网络产生过拟合现象,降低分类效果。2.光谱信息冗余、存在干扰像素,3D-CN
随着海洋领域的大力发展,声隐身性对于海上工作有着至关重要的作用。开展水下声源定位研究,确定水下声源所处空间的分布情况,研究不同类型声源对水下平台的影响,是进行减振降噪的一个重要过程。随着减振降噪技术的不断发展,水下平台自身辐射的噪声水平越来越低,若仍使用在远场条件下对水下声源的分析方法已经不能准确地获得声源位置信息。相较于窄带声源,宽带声源可以携带更多信息。因此,研究宽带声源的定位方法具有特别重要
随着指纹识别技术在国内外快速发展并被各个领域所应用,人们对指纹识别系统性能的要求也愈来愈高。虽然指纹识别系统已相对成熟,但现有的提取指纹方向场的算法仍然存在问题,指纹图像在曲线角度特别陡的区域方向信息不连续以及没有办法进行准确平滑,在脊线中存在一些空洞或者在谷线上有不定数量的斑点情况下,对于离散类指纹图像无法起到很好的提取效果。本文为解决上述问题,提出一种改进的指纹方向场提取算法。本文根据干涉图样
图像配准不仅是图像融合和三维重建中非常重要的中间步骤,同时也在遥感图像和医学影像领域中受到越来越多的关注。因此,对图像配准的方法进行研究具有重要的理论价值以及现实意义。在传统方法使用整幅图像进行配准时,引入无关区域的干扰,并且特征点匹配存在精度不足的现象,为此本文提出基于Faster RCNN的图像配准算法。本文通过改进的Faster RCNN神经网络对参考图像和浮动图像进行感兴趣区域提取,减少了
森林火灾破坏性大,严重威胁森林的安全。传统的森林火灾检测方法主要是通过各种传感器对区域内温度、光谱、烟雾颗粒、可燃气体含量等指标进行检测,然而,这些感应设备存在信息量损失大、稳定性较差和实时信息无法存储等缺陷。而基于图像处理技术的森林火灾探测技术可以有效弥补传统探测方式的弊端,实现对森林火灾的实时监测。 本文针对森林火灾图像识别问题,在深入研究林火图像特点的基础上,采用脉冲耦合神经网络(PCNN