论文部分内容阅读
机动车等移动源的动态排放测算一直是我国进行空气质量模拟工作的瓶颈问题。基于各污染源动态排放量的空气质量模拟,是空气污染物治理中制定决策的重要依据。目前工业源等固定源已实现在线实时监测,可获取连续动态排放数据,而机动车为主的移动源多为一年一度的静态排放总量测算,难以支撑大气污染物的实时动态测算和空气质量模拟分析。机动车移动源动态排放测算难以实现的重要原因之一是缺乏有效的路网全样动态流量测算方法。机动车路网动态排放量基于路网动态流量、道路长度和排放因子进行测算。其中,单车排放因子测算方法得到国内外大量学者的深入研究,已具备有效测算方法;而路网全样流量受监测技术限制,难以通过实际采集的方式获取,也缺乏有效测算方法,导致路网动态排放测算难以实现。因此,有必要开展路网全样动态流量测算方法的研究。
目前路网全样动态速度采集技术较为成熟,基于流量-速度基本图模型,通过速度数据推算流量,是获取路网全样流量数据的重要手段。基于交通流基本图的流量测算研究开展较早,但由于其难以对面向交通管理与控制的短时间粒度(5min)流量进行准确测算,在交通管理与控制领域并未得到广泛的实际应用。对于路网机动车动态排放测算,小时粒度流量已满足需求,同时基于交通流模型的小时粒度流量测算精度较高,适应于路网机动车排放测算领域。因此,本文将基于交通流基本图模型研究面向排放测算的路网全样动态流量测算方法。
道路交通流特征是人的出行规律在路网上的表达。受出行目的和道路功能影响,交通流表现出不同形态,例如,以通勤出行为主的工作日交通流和以娱乐活动出行为主的周末/节假日交通流具有不同形态;放射线潮汐流和环路交通流具有不同单双峰形态。出行的规律性及道路的分类分级特征,使交通流可被聚类为有限模式。由于不同模式交通流存在明显差异,针对不同模式分别进行流量预测,有助于提高流量预测精度。因此,研究交通流模式的划分和识别方法是十分必要的。
基于以上背景,本文基于多源速度、流量和排放实测数据,研究交通流模式划分和识别方法,对交通流基本图影响因素进行定量分析,建立各等级道路不同交通流模式、不同时段下的交通流基本图模型,实现路网全样动态流量测算,并进行路网动态排放测算的案例应用。本文的主要研究内容和发现总结如下:
(1)提出了基于速度时变差异直接指标的交通流自组织映射(Self-organizing Maps, SOM)算法神经网络聚类方法,可以实现对城市交通流的高效聚类。构建了周一到周四工作日、周五工作日、周六、周日、雨天、节假日、晚高峰突出、早高峰突出8类交通流模式,可以有效刻画城市道路90%以上交通流模式。
(2)提出了各等级道路不同时段速度指标的交通流模式快速识别算法。本文提出的基于24小时、早晚高峰、0:00-12:00和早高峰速度指标的模式识别方法精度均较高,各等级道路平均正确识别率分别为94.87%、93.64%、82.45%和80.96%。深度置信网络能高效实现大规模速度数据的模式识别,对全天、早晚高峰、0:00-12:00速度指标的平均正确识别率分别为93.02%、90.98%、82.45%;经过遗传算法和模拟退火遗传算法优化的BP网络模式识别精度提高,对全天速度指标的识别精度分别提高7.38%和7.96%。
(3)基于交通流基本图模型构建了各等级道路不同交通流模式、不同时段下的路网全样动态流量测算方法。通过对特定道路流-速-密基本图模型影响因素的定量分析,发现除已被既有研究识别出的大型车比例、天气条件外,早/晚高峰、工作日/节假日等不同出行目的引起的驾驶行为差异会显著影响交通流基本图。同一路段早高峰通行能力比晚高峰高3.47%,节假日通行能力比工作日高4.73%。综合考虑道路等级、早/晚高峰、工作日/节假日等因素比只考虑道路等级构建的交通流模型对流量测算的精度提高6.51%。
(4)进行了基于路网全样动态流量对机动车路网动态排放量进行测算的案例应用,验证了本文提出的面向排放测算的路网全样流量测算方法的可靠性,可对节能减排政策进行快速评估。
目前路网全样动态速度采集技术较为成熟,基于流量-速度基本图模型,通过速度数据推算流量,是获取路网全样流量数据的重要手段。基于交通流基本图的流量测算研究开展较早,但由于其难以对面向交通管理与控制的短时间粒度(5min)流量进行准确测算,在交通管理与控制领域并未得到广泛的实际应用。对于路网机动车动态排放测算,小时粒度流量已满足需求,同时基于交通流模型的小时粒度流量测算精度较高,适应于路网机动车排放测算领域。因此,本文将基于交通流基本图模型研究面向排放测算的路网全样动态流量测算方法。
道路交通流特征是人的出行规律在路网上的表达。受出行目的和道路功能影响,交通流表现出不同形态,例如,以通勤出行为主的工作日交通流和以娱乐活动出行为主的周末/节假日交通流具有不同形态;放射线潮汐流和环路交通流具有不同单双峰形态。出行的规律性及道路的分类分级特征,使交通流可被聚类为有限模式。由于不同模式交通流存在明显差异,针对不同模式分别进行流量预测,有助于提高流量预测精度。因此,研究交通流模式的划分和识别方法是十分必要的。
基于以上背景,本文基于多源速度、流量和排放实测数据,研究交通流模式划分和识别方法,对交通流基本图影响因素进行定量分析,建立各等级道路不同交通流模式、不同时段下的交通流基本图模型,实现路网全样动态流量测算,并进行路网动态排放测算的案例应用。本文的主要研究内容和发现总结如下:
(1)提出了基于速度时变差异直接指标的交通流自组织映射(Self-organizing Maps, SOM)算法神经网络聚类方法,可以实现对城市交通流的高效聚类。构建了周一到周四工作日、周五工作日、周六、周日、雨天、节假日、晚高峰突出、早高峰突出8类交通流模式,可以有效刻画城市道路90%以上交通流模式。
(2)提出了各等级道路不同时段速度指标的交通流模式快速识别算法。本文提出的基于24小时、早晚高峰、0:00-12:00和早高峰速度指标的模式识别方法精度均较高,各等级道路平均正确识别率分别为94.87%、93.64%、82.45%和80.96%。深度置信网络能高效实现大规模速度数据的模式识别,对全天、早晚高峰、0:00-12:00速度指标的平均正确识别率分别为93.02%、90.98%、82.45%;经过遗传算法和模拟退火遗传算法优化的BP网络模式识别精度提高,对全天速度指标的识别精度分别提高7.38%和7.96%。
(3)基于交通流基本图模型构建了各等级道路不同交通流模式、不同时段下的路网全样动态流量测算方法。通过对特定道路流-速-密基本图模型影响因素的定量分析,发现除已被既有研究识别出的大型车比例、天气条件外,早/晚高峰、工作日/节假日等不同出行目的引起的驾驶行为差异会显著影响交通流基本图。同一路段早高峰通行能力比晚高峰高3.47%,节假日通行能力比工作日高4.73%。综合考虑道路等级、早/晚高峰、工作日/节假日等因素比只考虑道路等级构建的交通流模型对流量测算的精度提高6.51%。
(4)进行了基于路网全样动态流量对机动车路网动态排放量进行测算的案例应用,验证了本文提出的面向排放测算的路网全样流量测算方法的可靠性,可对节能减排政策进行快速评估。