论文部分内容阅读
现如今,环境污染随着生产技术与工业的发展与日俱增。其中的重金属污染不容忽视,如废水中所含的重金属Pb,Cr,Cd等。废水经过处理后仍然可能存在重金属,这将导致土壤的污染,并且水中的重金属会随着食物链进入人体内,从而不断地在人体内一些重要的器官中累积,如肾脏,肝脏及骨头,最终造成健康系统紊乱。铅与铬因其所具有的毒性而备受关注,它们均可由人的消化道与呼吸系统及皮肤等渗入体内,被人体吸收。当皮肤接触到Cr(Ⅵ)时,可能造成皮肤过敏,甚至导致遗传性基因缺陷;如被吸入可能会致癌。Pb则严重危害人类的神经系统与消化系统,并且铅中毒是具有长期性的。所以,加强预防环境污染,防止污染蔓延显得尤为重要。这就需要对水样进行分析检测,然而通常实际水样中重金属元素浓度多为ppb或ppt级,如直接使用石墨炉原子吸收光谱仪进行检测可能存在一定的困难,并且在实际样品中多含基体干扰。因此,就有必要建立简便、灵敏的检测环境水样中重金属含量的前处理方法。近年来,分散液液微萃取与分散微固相萃取作为环境友好型的前处理方法被广泛使用。它们具有耗费低,操作简便,污染小等优点。电膜萃取是一种在传统中空纤维膜萃取基础上进行加电的萃取技术,它具有加快分析物转移速率,缩短萃取平衡时间的优点。表面活性剂取代有毒的有机溶剂作为萃取剂大大降低了污染,并且它还可用作分散微固相的稳定剂。纳米颗粒(TiO2)具有较大的表面积与不饱和性,因此,化学活性也颇高,可吸附一些金属离子,并且吸附量较大,达到吸附平衡所需时间较短。本文主要开展了三种快速、简便的新型样品前处理技术在分离与富集重金属元素方面的应用研究,与石墨炉原子吸收光谱仪联用,进行环境水样中重金属(铬、铅)含量的分析检测。主要研究内容概括如下:1、电膜萃取技术与GFAAS联用,建立了水样中痕量Cr(Ⅲ)的检测方法。实验中优化了有机溶剂的类型,溶液的pH,络合剂的类型及萃取时间等一些影响萃取效率的条件参数,并应用于环境水样中痕量Cr(Ⅲ)的分析,实验结果较为满意。2、以非离子表面活性剂为萃取剂,采用浊点-分散液液微萃取技术与GFAAS联用测定了水样中痕量铬并进行铬的价态分析。实验中优化了溶液的pH,络合剂PMBP的浓度,表面活性剂的种类及其浓度等一些影响萃取效果的因素,并应用于环境水样中痕量铬的分析,实验结果较为满意。3、以纳米Ti02为吸附材料,采用表面活性剂辅助的分散微固相萃取技术,与GFAAS联用测定了水样中痕量铅。实验中优化了溶液的pH,表面活性剂的类型与浓度及吸附剂的质量等一些影响萃取效果的因素,并应用于环境水样中痕量铅的测定,实验结果较为满意。