论文部分内容阅读
随着互联网技术的发展,电子商务正在改变着社会经济中各个行业的传统经营模式,尤其是彻底地改变了企业与客户之间的关系。如何实现客户价值最大化,这就要进行客户价值分析,找到最有价值的客户,开展特别的促销活动,提供更个性化的服务,设法保持这类客户,使企业以最小的投入获得最大的回报。本文的主要研究内容是把基于粗糙集的数据挖掘技术应用到电子商务的客户管理中来,以基于粗糙集的决策树方法来构造模型,进行电子商务客户价值研究,从大量数据中提取有用的分类规则,为电子商务企业进行客户管理提供智能决策支持。主要研究成果有:(1)将客户的当前价值(即客户购买情况)和客户的潜在价值(即客户兴趣度等)结合起来构建客户价值度量模型。(2)以粗糙集理论和数据挖掘理论为出发点,将粗糙集理论与数据挖掘中的决策树技术有机结合,进行了基于粗糙集理论的数据挖掘模型研究,提出了一种ID3算法的改进算法——基于粗糙集属性依赖度理论的决策树算法,进一步提高了算法效率。(3)结合青岛中科英泰公司的国家级项目——面向零售业的商业智能分析平台,进行了基于粗糙集的决策树技术在电子商务客户价值研究项目中的实证分析,获取了有效的电子商务客户价值分类规则,使得本文的研究既具有理论意义,又具有实用价值。