【摘 要】
:
网络功能虚拟化(Network Function Virtualization,NFV)通过虚拟化技术,将传统的基于专用硬件的网络功能,以软件的形式(虚拟网络功能)部署在通用服务器上,然后按需链接对应的虚拟网络功能形成服务功能链,对用户的请求进行服务。然而由于通用服务器的处理能力有限等原因,NFV的性能是一个亟待优化的问题。传统的基于各种先决条件和模型的性能优化方案,在实际网络环境中有很大的限制性
论文部分内容阅读
网络功能虚拟化(Network Function Virtualization,NFV)通过虚拟化技术,将传统的基于专用硬件的网络功能,以软件的形式(虚拟网络功能)部署在通用服务器上,然后按需链接对应的虚拟网络功能形成服务功能链,对用户的请求进行服务。然而由于通用服务器的处理能力有限等原因,NFV的性能是一个亟待优化的问题。传统的基于各种先决条件和模型的性能优化方案,在实际网络环境中有很大的限制性,因此需要设计一种不需要先验知识、能够自适应进行调整的优化方法。针对NFV工作流程中服务功能链部署的相关过程,分别对部署方法优化和部署后节点处理能力提升两方面展开研究和讨论,组合实现性能的优化。
针对节点上部署了一个或者多个虚拟网络功能的场景,在已有研究的基础上,借鉴引入GPU加速的策略,同时根据GPU协同处理时对接收数据包的数目大小敏感的特性,利用增强学习的方法设计了一种适应网络动态的分流方案,可以有效降低节点上网络功能的处理时延。实验表明,本方案与相关静态分流方案相比,在保障处理吞吐量的同时可以显著降低处理时延。
针对服务功能链的部署过程,因为要面对动态的网络,节点资源实时变化等复杂的环境,需要实现动态的映射决策,以最大化效益。根据该问题的特性,基于增强学习设计了一种不依赖先验知识的自适应动态部署算法,以降低平均传输时延和部署失败率整体代价为优化目标,从而有效提升NFV性能。实验表明,该算法在降低传输时延和部署失败率的整体代价方面优于已有研究的整数线性规划等方法,对于性能的优化更为有效。
其他文献
集成学习是一类重要的机器学习策略。集成学习通过构造含有多个学习器的集合,以期望获得比其中任意一个个体学习器更优的算法准确度。然而,机器学习模型的训练与使用需要消耗相应的资源,包括但不限于为完成计算任务所需的存储空间、执行时间,和耗费的能量,以及其他所需的物质与人力资源。额外的存储需求和计算成本很大程度上限制了集成学习的潜在应用。有限的计算资源成为许多集成学习方法无法回避的问题,特别是当集成规模较为
随着云计算技术的发展,云存储凭借其扩展性好、部署快、成本低等诸多优势而得到广泛应用,然而近年来屡次出现的数据丢失、泄露、恶意攻击等事件使用户数据面临巨大的安全风险。数据加密技术和访问控制技术是保护数据安全的两个重要手段,现有的密文策略属性基加密方案(CP-ABE)将访问控制技术与数据加密技术相融合,被认为是云环境中最为理想的数据保护方法,但多数CP-ABE存在效率低、对恶意用户攻击的抵御方式过于简
大脑神经网络对人类的思维、情感与行为都起着决定作用,在脑疾病以及类脑智能研究方面具有重要价值。而神经元是构成脑网络的基本单元,重建神经元的拓扑结构并分析其形态特征是脑网络研究中的重要方向。 近十几年来,随着神经标记和光学成像技术的逐渐成熟,科学家已经能够获得单神经元水平的全脑三维图像,为神经元形态重建奠定了数据基础。接下来的问题是如何从这些图像中识别、分割神经元的形态结构,并重建数字化三维模型。
多模型数据库是近年来数据库领域里一个新的研究方向。OrientDB作为一种新兴的多模型数据库,默认的参数配置并不能使其达到最佳性能,需要针对实际应用负载对其参数配置进行调优,现有的单模型数据库上的参数配置调优经验无法直接迁移到OrientDB上,为了降低参数配置调优难度,提高OrientDB性能,充分发挥其潜能,亟需研究OrientDB参数配置自动调优技术。 论文研究OrientDB参数配置自动
为了减少数据处理过程中数据移动带来的开销,近数据处理(Near Data Processing, NDP)提出在存储数据的地方就近处理数据。分布式对象存储系统中的存储节点不仅能用于存储数据,还可以用于近数据处理。然而现有的面向存储系统的NDP方案并未能充分利用大量存储节点的资源来满足近数据处理的需求。 首先设计并实现了一个基于存储节点的本地近数据处理方案,接着复现了已有的异地近数据处理方案,通过
新兴的非易失性存储器件(NVM ,Non-volatile Memory)具有持久性、字节寻址、高集成度、低能耗、价格低廉等优点,相比于DRAM等传统存储器件具有更广阔的发展前景。但NVM器件单元一般仅能承受108~1012次写入,远小于传统DRAM器件的使用寿命。而应用负载的写分布不均更是加速了器件的老损,如何延长NVM器件的使用寿命是目前应用研究的难点之一。 针对现有NVM器件磨损均衡方案存
近年来,云盘凭借其高可用、高可靠、低成本以及可定制化的特点,在云块存储系统中的应用越来越广泛。云块存储系统后端有很多存储仓库,系统通过一定的分配策略将新云盘分配到最合适的仓库来供用户使用。随着云计算和互联网技术的快速发展,用户数据量显著增长,对云盘的分配策略带来了巨大的挑战。由于新云盘在分配前的负载信息未知,现有的云盘分配策略仅考虑存储容量维度,从而导致云块存储系统多维度资源(例如容量、IOPS、
随着多媒体数据的爆发式增长和云存储技术的迅猛发展,海量云端数据呈现出多模态混合并存的特性,如何以内容语义为标准对其进行智能化管理和跨模态分析成为传统云存储系统面临的新挑战。一方面,数据体量的增加和模态之间的差异导致有效数据的检索难度陡然提升。另一方面,现有存储系统中,数据无法建立以内容语义为标准的标签与关联。因此,根据用户需求和内容相关性智能化检索云端多模态数据是当下亟待解决的热点问题。 目前,
大脑作为中枢神经的主要组成部分,是生物体最复杂、最重要的器官之一,其结构和功能机制是当前脑科学研究领域的热点和难点。脑科学研究者们从高分辨生物图像中重建出神经元、血管、核团形态并进行计算和分析,由于形态学研究需要大量数据,数据共享变得尤为重要。然而,目前的数据共享方式局限于文件、文字、图片、视频等静态信息,需要用户下载或者拷贝数据并使用本地软件才可进行形态观察,浪费大量人力与物力。此外,现有的可视
为了处理大量的实时数据流,现有的分布式流处理系统遵循数据并行的原理,并利用不同的数据分区策略。其中一对多分区策略(例如,ApacheStorm中的广播分组)在各种大数据应用程序中起着至关重要的作用。对于一对多数据分区,上游处理实例将生成的元组发送到大量的下游并行处理实例。现有的分布式流处理系统通常基于面向实例的通信来实现一对多数据分区,其中上游实例将数据元组分别传输到不同的下游实例。但是,多个下游