论文部分内容阅读
Ti3SiC2是典型的312相三元层状化合物,兼备陶瓷和金属材料的优点。它具有高熔点、高强度、高导电、高导热,低摩擦系数、吸波和热稳定性好等特点,可望广泛应用于机械、冶金、化工、机电和航空航天等领域,是近年来广受关注的一种新型材料。为了促进该材料得到广泛利用,人们希望在提高其抗氧化性能的同时,能够获得优异的力学性能,并保持良好的导电性能。本研究以Ti、Si和TiC粉为主要原料,采用反应热压烧结法制备了Ti3SiC2基复合材料,系统研究了添加物(Al2O3、SiC、MgAl2O4、TaC)类型、粒径、添加量和热压烧结温度对Ti3SiC2基复合材料物相组成、显微结构、力学性能、高温抗氧化性和常温导电性能的影响,得到如下结果:(1)Al2O3、MgAl2O4在反应热压条件下与Ti3SiC2化学相容,引入适量的氧化物(20wt%Al2O3、30wt%MgAl2O4)可以获得致密的Ti3SiC2基复合材料;加入微米级氧化物比纳米级氧化物更有利于Ti3SiC2基复合材料致密化。(2)在1450℃热压烧结时,随着SiC含量的增加,SiC/Ti3SiC2复合材料致密性降低,这是由于SiC为共价键结合高温下扩散系数较低,不利于烧结致密化,引入过多的SiC会影响Ti3SiC2相反应烧结和致密化。引入TaC获得的是以Ti3SiC2和TaTiC2为主晶相的复合材料;当TaC引入量较低时(<30wt%),Ti3SiC2为主晶相;TaC引入量再增加,Ti3SiC2含量降低,TaTiC2含量和TiC相增高,当引入量为50wt%时,Ti3SiC2相已不是主晶相。(3)引入第二相添加物Ti3SiC2基复合材料力学性能均表现为随加入量增大先增加后降低的规律。当Al2O3含量为30wt%时Al2O3/Ti3SiC2复合材料的抗弯强度达到最大值512 MPa,当Al2O3含量为20wt%,Al2O3/Ti3SiC2复合材料断裂韧性达到最大值7.09 MPa·m1/2。在1450℃热压烧结时,当MgAl2O4含量为20wt%时,MgAl2O4/Ti3SiC2复合材料抗弯强度达到最大值528MPa,断裂韧性最大值为7.10MPa·m1/2(4)在1450℃热压烧结时,引入20wt%SiC的SiC/Ti3SiC2复合材料抗弯强度为496 MPa,断裂韧性达到7.70 MPa·m 1/2。添加30wt%TaC时获得的Ti3SiC2基复合材料力学性能最高,随着TaC引入量的增大,复合材料的相组成和显微结构发生很大变化,导致其力学性能变差。(5)Ti3SiC2基复合材料的力学性能与Ti3SiC2相含量和粒度有着密切关系,断裂过程发生Ti3SiC2相晶片弯折与拔出,产生了裂纹偏转;第二相起到了细化晶粒和弥散强化作用。(6)在Ti3SiC2中引入Al2O3、MgAl2O4、SiC、TaC等第二相添加物,制备的Ti3SiC2基复合材料高温抗氧化性能均得到提高,第二相添加物引入量越多,Ti3SiC2基复合材料的抗氧化性能越好;添加SiC的Ti3SiC2基复合材料的抗氧化性能最好,这是由于SiO2使氧化产物层致密化。(7)利用Factsage软件计算得到的TiO2-SiO2二元相图、TiO2-SiO2-Al2O3三元相图和TiO2-SiO2-Al2O3-MgO四元相图解释了SiC/Ti3SiC2、Al2O3/Ti3SiC2和MgAl2O4/Ti3SiC2复合材料高温氧化产物组成和X-射线衍射图结果。(8)引入第二相添加物均会降低Ti3SiC2基复合材料的导电性能,引入量越大电导率降低越明显;引入第二相添加物粒径越小,该复合材料的常温导电性能下降越显著。