清昭陵建筑研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:bupingzhenren
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
清太宗皇太极与孝端皇后博尔济吉特氏合葬的昭陵,位于盛京即沈阳北郊的隆业山南麓,是清初关外三陵中营造最晚、建筑规制却最隆重、最精致的帝陵。这里因其特殊的地理位置及政治意义,形成了满、汉、蒙多元文化共生的大格局环境,昭陵建筑在构造工艺及装饰风格方面也表现出了兼容并蓄的特色。
  本文在文献研究和实地测绘调查的基础上,梳理了昭陵的建筑布局、建制沿革等工程概况;对组群内所有建筑单体进行了详细的介绍描述;采用系统分析比较研究的方法,对昭陵建筑大木作、石作、瓦作、装饰特色进行研究,尝试性的论述了昭陵建筑法式特征中体现出来的时代性、地域性;运用理论研究与个案支持相结合的方法,从昭陵总体规划方法和外部空间设计意向等方面,探讨了中国古代建筑设计理论在昭陵营建中的应用;通过对祭祀礼仪的解读,力求探寻祭祀的空间行为。本文力求使清昭陵建筑特色和文物价值得到更加深入的体现,并为今后研究清代陵寝制度做法谱系传承奠定基础。
其他文献
深度强化学习近年来在围棋算法、计算机游戏、机器人仿真控制等存在巨大状态空间的应用场景下取得了很大的突破,这得益于深度神经网络的函数逼近能力,也依赖于模拟器和计算资源,因为模拟器可以在计算资源足够的情况下快速并且近乎无限地生成智能体与环境交互的数据。但是在许多实际应用场景下,例如推荐系统、物流管理、能源系统优化、机器人实际控制中,数据采集是高成本且低频率的,从而导致数据稀缺。因此,若想使得(深度)强
学位
颅内血管疾病是近几年来死亡率居高不下的严重疾病,给全世界患者带来严重的生命威胁。而非创伤性血管成像技术(CT angiography,CTA)能够显示大脑各大动脉细节,能够辅助医生早期发现患者颅内血管的隐藏病变。该技术不仅对患者安全高效,而且是辅助颅内血管疾病诊断的常用技术之一。而在医生分析CTA影像的大脑血管病变状况过程中,首先需要去除CTA影像中的颅骨部分,再进行血管的三维重建成像。但在目前提
学位
场景的实时三维重建是一个非常热门的研究领域,其目的是使用消费级可见光相机对场景进行扫描,自动生成一个精确完整的三维模型,该算法在增强现实游戏、机器人室内导航、AR家具展示等领域都有广泛的应用前景。此外,该领域注重实时性,也就是在扫描的同时生成三维模型。现有的研究只能使用稀疏点云进行实时网格构建,生成的模型不能充分表现场景的精确三维信息,从而难以进行应用。因此,研究更高精度的实时三维重建算法非常有必
随着医疗技术与人工智能技术的不断发展,形体健康渐渐成为了女性群体普遍关注的问题。女性在怀孕前后形体通常会产生较大的变化,其中异常的变化会对身体产生危害。快速智能的形体评估可以帮助医生更加准确高效地定位并量化形体异常,具有较大的研究意义和应用前景。  运用深度学习和图像处理相关技术,设计并实现了一套形体评估系统。该系统首先通过kinect深度相机采集体表的深度图像,经过预处理后分割出人体区域。然后通
学位
医学图像分割是计算机辅助诊断与治疗的基础,它对于提高医生关于心包积液、心包肿瘤等疾病诊断的效率和准确率来说有着独特的价值。研究基于深度学习的心包分割算法能够有效提高医生诊断的效率和准确率。  首先针对心包分割目前还未有公开数据集的问题,在专业医生的指导下,使用医学图像标注工具ITK-SNAP,制作了心包分割数据集,数据集结果得到了医生的认可。  其次,针对心包在图像中的特点,将三维卷积神经网络作为
随着虚拟现实技术的快速发展,真实场景与虚拟对象的虚实融合技术促成了更具广泛应用价值的增强现实领域。增强现实应用要想获得理想的虚实融合结果,离不开对真实场景和虚拟对象间几何一致性和光照一致性的探究,其中光照估计是光照一致性研究的重点。由于真实场景多以图像或视频方式采集,图像中像素信息受到几何、材质、光照等因素难以拆分的复合影响,使得基于图像的光照估计面临巨大的挑战;进一步,当真实场景图像仅为单幅时,
学位
随着信息技术的发展及大数据时代的到来,产生及存储越来越多异源异构的数据。为了能够简单高效的使用这些高度多样化的数据,对这些数据进行数据融合就至关重要。而集合相似度连接是数据融合中的根本任务。集合相似度连接指在给定相似度度量函数(如重合相似度、Jaccard相似度、余弦相似度、Dice相似度及编辑距离等)下,计算由集合构成的数据集中所有相似度大于给定相似度阈值的集合对或最相似的前k个集合对。  基于
学位
近年来,随着目标检测领域的快速发展,使得基于目标检测的视频多目标跟踪算法取得了突破性进展,在视频监控与安防、智能医疗、自动驾驶等方面都有着非常广泛的应用。然而算法的跟踪速度问题以及如何应对目标遮挡带来的跟踪漂移问题,仍然是制约其实际应用的两个重要因素。本论文主要针对这两个问题展开了研究,主要工作内容如下。  首先,为了实现多目标跟踪网络跟踪速度与精度之间的良好平衡,提出一种融合目标检测与数据关联的
近年来,分布式异步离线优化算法受到广泛关注。相比分布式同步架构,各个计算节点独立计算、不受约束的特性使其在大规模数据和复杂模型上拥有高性能、高效率的表现。另一方面,随着移动边缘计算逐渐成为发展趋势,数据从以云为中心分布到边缘节点,边缘节点本地处理数据的特性带来低时延和安全性的同时,分布式协同任务将面临天然的非独立同分布的倾斜数据情形。移动边缘计算场景下的分布式机器学习异步训练的意义越来越突出,而此
信息化时代下,上市公司以及金融监管机构都会在互联网上发布各种各样的包含非结构化人员简历文本的海量公告。以结构化的形式描述非结构化人员简历中与人物相关的属性、实体、事件,发现人员之间的隐含关系,构建金融领域人物关系图谱,可以挖掘金融公告中的丰富知识,发现潜在客户、预警潜在风险,提升金融行业效率。目前,人员简历信息抽取工具都是针对结构化、半结构的求职简历文件进行处理的,具有一定的局限性,无法针对金融公
学位