Ⅳ B族单质及其合金高压下的第一性原理研究

来源 :山西大学 | 被引量 : 0次 | 上传用户:jxczl900424
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
高压物理科学是材料研究领域的重要学科。高压可以使材料的结构、电子结构以及超导电性等特性发生改变。高压相变和超导电性是材料研究领域的热点问题,在生物、化学、工业以及生产生活中有重要价值。本文针对材料的高压行为,采用以密度泛函理论为基础的从头算法,研究了以下内容:金属Hf的结构、弹性、声子谱、电子、热力学性质和超导电性等特性,以及高褶皱二维蜂窝结构铪烯的结构稳定性以及超导电性;等原子比的Ti Zr、Ti Hf和Zr Hf合金的结构、弹性、声子谱和超导性能;U-Zr合金体系的结构,电子结构、磁态和弹性性能。对于金属Hf,计算的结构参数、体模、声子谱和热力学特性等结果与实验结果符合良好。计算的hcp到omega相以及omega到bcc相转变的压力是44.8和73 GPa。hcp、omega和fcc相在P=0 GPa时的弹性常数和弹性模量与之前的实验和计算结果吻合。0 GPa时,hcp、omega和fcc相是机械稳定相,bcc相是机械不稳定相,加压后bcc相也可以达到机械稳定。四种结构的体模B随着压力增加而增大。hcp、fcc和bcc相的剪切模量也随压力增加而增大,但omega相的剪切模量是先增大后减小。弹性各项异性结果显示,金属Hf是各项异性的材料,并且通用各向异性指数显示,hcp和omega相在加压后各向异性增加,bcc相各向异性减小。声子谱显示,hcp和omega相在较宽压力范围是动力学稳定相。bcc相常温常压下不是动力学稳定相,但加压到62 GPa或者升高温度也可以实现动力学稳定。较宽的压力和温度范围内hcp相热力学特性的计算结果与实验结果基本一致。基于吉布斯能量预测了金属Hf的P-T相图。超导转变温度Tc的计算结果与实验结果相符。费米能级处态密度的贡献主要是d轨道电子,并且Tc与费米能级处d轨道电子的占据状态有着密切关系。bcc相大的电声耦合常数λ主要是源于[1 1 0]方向的TA1支声子软模。加压后,Tc的增加或减小与λ的增大或减小密切相关。二维铪烯的计算结果显示,环境条件下,预测的高褶皱结构的铪烯是动力学稳定结构。超导转变温度Tc的预测结过是2.58 K,略大于体结构hcp-Hf的计算结果。等原子比的Ti Zr、Ti Hf和Zr Hf合金的结果显示,α,ω和β相的晶格参数和相变压与其它已知的实验和理论数据是一致的。0 K和0 GPa时,Ti Zr和Ti Hf合金的ω相在能量学上更稳定,而Zr Hf合金是α相基态能量更低。加压后ω相会转变成β相,预测的Ti Zr、Ti Hf和Zr Hf合金ω→β的相变压分别是35、68.3和46.7 GPa。α、ω和β相的弹性常数和弹性模量与已知的实验和计算结果相符,且α和ω相在环境条件下是机械稳定相,而β相为机械不稳定相。此外,α和ω的机械稳定性在给定的压力范围内不变,β相在压缩后可以成为机械稳定相。压力的增加可以提高α-Zr Hf和ω-Zr Hf的延展性,降低β-Zr Hf的延展性。α到ω(α到β)相变会降低(提到)Zr Hf合金的延展性。在环境条件下,α和ω相是动力学稳定相,β相是动力学不稳定相,但是加压或升温可以使β相动力学稳定。此外,计算的Tc与实验数据吻合较好。压缩后,Ti Zr、Ti Hf和Zr Hf合金各个相的Tc增加或减少与对应的电声耦合常数λ的增加或减小紧密相关。合金体系的材料性能是在相应的纯金属的性能的中间水平,并且与相应的单一元素系统存在类似的高压行为。U-Zr合金体系的结果显示,δ-UZr2的基态晶格常数与实验结果符合的很好。并且,有随着压力的增加,a/a0是逐渐增大的,c/c0和V/V0逐渐减小,说明δ-UZr2的c方向更易压缩。δ-UZr2具有良好的金属性,压力的增加到约17 GPa,电子态密度自旋向上和向下的曲线由不对称变为对称,预示δ-UZr2由自旋铁磁态变为非磁态。0GPa时,δ-UZr2是力学稳定相。0~50 GPa的压力范围内,体模B、剪切模量G、杨氏模量E以及B/G值随着压力增加而增大,说明压力提高了材料的硬度以及延展性。对于等原子比U-Zr合金体系。优化后得到的结构参数符合相应的实验值。计算结果显示,铁磁态的α(U)相UZr合金是更加稳定的结构。在实验发现的γ(U,Zr)相的基础之上,我们预测了两个可能的结构ω(Zr)和α(Zr)相。费米能级附近的主要电子占据是来自U-5f电子,并且存在弱的关联效应。Zr元素决定着UZr合金的力学强度。总的来说,金属钛、锆、和铪与它们的三种等原子比二元合金在晶体结构、相变规律、力学和动力学特性以及超导电性上面存在很多相似之处。比如:第一,虽然单晶与合金的低温低压下的结构可能不一样,但是它们的高温高压相都是一种体心立方结构;第二,不论是单晶还是合金它们的相变驱动力都是热力学驱动而不是机械驱动,并且都是良好的延性材料;第三,单晶与合金的超导转变温度最高的结构都是β相,并且合金相的最大超导转变温度要高于单晶相。此外,对于钛、锆、和铪元素与其它族元素的合金,比如铀锆合金体系,锆元素为体系提供了主要的力学性能。这也体现了Ⅳ B族元素的良好力学性能的用途。
其他文献
量子中继器是构建大尺度量子网络,实现长距离量子通讯行之有效的工具。光与原子量子记忆(自旋波存储)纠缠源是实现量子中继的基本元件。近20年来围绕冷原子系综的光量子存储取得了极大的进步。实用化的量子中继要求量子存储具有大的多模存储能力,长存储寿命以及高存储效率等3个重要的指标。本文基于Duan-Lukin-Cirac-Zoller(DLCZ)量子存储方案,我们开展了一系列的研究工作,具体工作包括:(1
近年来,量子模拟已经成为了备受关注的研究领域,因为它不仅使我们能够更加充分地探索多体量子系统的基本特性,还能够使我们揭示很多新能源和新材料。随着实验技术的提高,对于实现量子模拟器,量子系统的相干操控已经足够成熟。量子相干技术的发展使得很多人造可控系统都能够作为量子模拟器进行量子模拟。现今所应用的量子模拟有两类,一类是基于电路重构演化的量子模拟,通常称为数字型量子模拟;另一类是用一个可控的量子系统去
夸克-胶子等离子体(QGP)是一种在极高温或极高密条件下形成的液态凝聚态物质。量子色动力学(QCD)预测初期宇宙和中子星内部都存在QGP物质,物理学家们在高能重离子(核-核)碰撞实验中也发现了 QGP物质。QGP物质因具有强耦合低粘滞流体的性质,而被称为“完美流体”。在高重子化学势、低温区,QGP会相变为色超导相。在高能碰撞中产生的QGP物质体积极小(几千个fm3),且存在的时间很短(几十个fm/
在量子层面控制光与物质的相互作用并实现该过程的精密测量是量子光学实验研究及其相关应用的核心目标之一。中性原子作为一个基本量子单元,为光与物质相互作用的研究提供了很好的平台。在自由空间中对中性原子的冷却与俘获及对单个原子,直至原子阵列的精确操控,为演示一些基本的量子操控和量子信息处理过程提供了较为理想的舞台,从而使基于中性原子体系的光与物质接口,作为链接光子与原子之间量子信息存储和交换的节点,成为一
光镊是一种利用光场辐射压来俘获微小粒子的技术,比如原子分子、微米纳米尺度粒子、细胞等,是目前基础科学研究中的一个重要方向,被广泛的应用于物理和生命科学等领域。其中,光悬浮纳米粒子是一个典型的应用。与通过悬臂连接的力学谐振子相比,光俘获的粒子只与周围环境接触,消除了由悬臂引入的加热效应和退相干限制。在高真空中,光悬浮纳米粒子系统的质量因子预期可以达到1012,对周围环境的变化非常敏感,常用于一些超精
量子态的纠缠特性是量子力学区别于经典物理的重要、基本性质,也是下一代量子技术革命的重要资源。随着量子技术的进步,深入理解量子态,特别是多粒子量子纠缠态的纠缠特性,不只是一个非常重要的基本理论问题,也是一个非常迫切的实际问题。对多体量子纠缠态的深入理解是量子物理中一个具有挑战性的问题。当前,多体量子纠缠态的研究可以简单地分为两个方面:(1)多体量子纠缠态纠缠结构的有效分类。多体量子纠缠态的结构分类是
学位
随着激光冷却原子技术的发展,超冷分子由于其独特的特性引起了广泛的关注。与原子相比,分子拥有更加丰富的振动和转动自由度。极性分子具有永久电偶极矩以及长程各向异性相互作用使得其可通过外场进行分子内态操控。这些特性使得超冷极性分子成为实现精密测量、量子计算以及量子模拟的良好载体。稳定分子态的制备是实现这些应用的前提。最低振动基态超冷极性分子由于其势阱深度较深,不会弛豫到更低的能态,分子性质较为稳定,且基
由于拓扑物态具有对细节不敏感、不怕噪声、抗干扰等优势,在1980年拓扑物态首次被发现以来的四十年间,对于新奇拓扑物态的研究已经成为了近代物理学中热门的研究课题之一。2010年,T.Kitagawa首次提出离散时间量子随机行走(离散时间量子行走)是研究拓扑物理的一个通用、简洁的量子模拟平台。由于离散时间量子行走具有可调控性强、形式简单、拓扑物理丰富等优点,利用离散时间量子行走去模拟各种新奇的拓扑物理
纳米材料具有显著的量子限制效应和优异的光电特性(包括高比表面积、强吸收、单光子发射等),从而在量子科学、材料科学和生命科学等领域都有广泛的应用。特别是金纳米粒子(AuNPs),因其导带电子集体振荡所产生的表面等离子共振效应会对入射光场产生显著的局域限制增强(达到纳米量级的空间限制)。这种局域等离激元共振还可以通过纳米粒子的大小、形状、间距和表面修饰等作进一步的调整优化。相比于单分子和量子点等发光体