论文部分内容阅读
随着重离子加速器以及核探测器的快速发展,核反应实验在研究原子核结构、核反应机制等方面得到了广泛的应用,更加丰富的核反应实验现象可以被观察到。但是对核反应的研究还不全面,还需要继续努力探索。在对原子核的实验研究中,对相关探测装置的刻度是数据处理中不可或缺的步骤,能量刻度问题深受人们的关注,它直接决定着核反应实验结果的准确性。通过对大量的核实验数据研究分析,我们发现在传统的刻度方法,特别是对CsI(Tl)闪烁晶体阵列探测器的能量进行刻度时存在一些问题。由于实验结果受到多方面因素的影响,我们会发现实验用到的多块(本次实验用的是64块)Cs I(Tl)晶体中处于大角度位置的探测单元未能探测到粒子或是探测的粒子未能达到统计要求的情况。这就为后续数据处理,即CsI(Tl)探测器的刻度,沉积能的计算以及粒子径迹重构带来困难。再者,CsI(Tl)闪烁晶体探测器的刻度非常复杂,不像半导体探测器的刻度可以找出相应的较为简单的线性关系。Cs I(Tl)晶体的光输出与粒子的原子质量数A以及核电荷数Z都紧密相关,这又使得对其进行刻度的难度增加。所以不管是从实验数据处理的本身要求上还是刻度方法的突破上,CsI(Tl)闪烁晶体阵列探测器的能量刻度都是原子核物理实验数据处理的重中之重。因此,迫切需要我们为解决这些问题寻找一种新的方法。通过研究,针对于上述问题,我们找到了一种对CsI(Tl)闪烁晶体探测器的能量进行刻度的新方法。这种方法可以刻度大角度范围的CsI(Tl)闪烁晶体探测器的能量。该方法主要通过归一化将阵列中所有晶体获取的能谱幅度统一到相同的幅度值,然后以中心某一块能较为清晰的分辨出所有所测粒子的能损-能量二维谱的探测器单元为基准,对所测得的每一核素进行能量刻度。这样可以使相应的粒子达到一定的统计范围,减小刻度误差。并可以将该刻度系数合理外推到所有探测器单元对应的核素上。从而解决了原来大角度探测单元因为测量到的粒子数少无法进行刻度的矛盾,实现了对探测器阵列中所有单元的能量刻度。对核反应研究中大角度的角分布测量、后续粒子径迹重构及关联事件的挑选等物理过程提供了可能。从而使得实验数据得到有效利用,解决了边角位置的CsI(Tl)闪烁晶体能量由于统计不足而无法进行刻度的难题,有利于后续相似实验的能量刻度,为此提供重要的现实意义。