对CsI(Tl)闪烁晶体阵列探测器的能量刻度方法的研究

来源 :西南大学 | 被引量 : 0次 | 上传用户:xgw111
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着重离子加速器以及核探测器的快速发展,核反应实验在研究原子核结构、核反应机制等方面得到了广泛的应用,更加丰富的核反应实验现象可以被观察到。但是对核反应的研究还不全面,还需要继续努力探索。在对原子核的实验研究中,对相关探测装置的刻度是数据处理中不可或缺的步骤,能量刻度问题深受人们的关注,它直接决定着核反应实验结果的准确性。通过对大量的核实验数据研究分析,我们发现在传统的刻度方法,特别是对CsI(Tl)闪烁晶体阵列探测器的能量进行刻度时存在一些问题。由于实验结果受到多方面因素的影响,我们会发现实验用到的多块(本次实验用的是64块)Cs I(Tl)晶体中处于大角度位置的探测单元未能探测到粒子或是探测的粒子未能达到统计要求的情况。这就为后续数据处理,即CsI(Tl)探测器的刻度,沉积能的计算以及粒子径迹重构带来困难。再者,CsI(Tl)闪烁晶体探测器的刻度非常复杂,不像半导体探测器的刻度可以找出相应的较为简单的线性关系。Cs I(Tl)晶体的光输出与粒子的原子质量数A以及核电荷数Z都紧密相关,这又使得对其进行刻度的难度增加。所以不管是从实验数据处理的本身要求上还是刻度方法的突破上,CsI(Tl)闪烁晶体阵列探测器的能量刻度都是原子核物理实验数据处理的重中之重。因此,迫切需要我们为解决这些问题寻找一种新的方法。通过研究,针对于上述问题,我们找到了一种对CsI(Tl)闪烁晶体探测器的能量进行刻度的新方法。这种方法可以刻度大角度范围的CsI(Tl)闪烁晶体探测器的能量。该方法主要通过归一化将阵列中所有晶体获取的能谱幅度统一到相同的幅度值,然后以中心某一块能较为清晰的分辨出所有所测粒子的能损-能量二维谱的探测器单元为基准,对所测得的每一核素进行能量刻度。这样可以使相应的粒子达到一定的统计范围,减小刻度误差。并可以将该刻度系数合理外推到所有探测器单元对应的核素上。从而解决了原来大角度探测单元因为测量到的粒子数少无法进行刻度的矛盾,实现了对探测器阵列中所有单元的能量刻度。对核反应研究中大角度的角分布测量、后续粒子径迹重构及关联事件的挑选等物理过程提供了可能。从而使得实验数据得到有效利用,解决了边角位置的CsI(Tl)闪烁晶体能量由于统计不足而无法进行刻度的难题,有利于后续相似实验的能量刻度,为此提供重要的现实意义。
其他文献
第一部分 多模态磁共振成像在胶质瘤术前分级中的应用研究目的:研究磁共振扩散张量成像(diffusion tensor imaging,DTI)及多体素氢质子磁共振波谱成像(multivoxel proton mag
化石能源作为今天世界能源的主要来源,是社会经济发展的重要推力,但是由于其不可再生和污染排放等问题,已引起全球关于能源短缺和气候变化的担忧。相较于传统的化石燃料,金属
随着当前核工业的迅速发展,放射性废物的处理成为了制约核工业发展的主要原因,如何妥善处理放射性废物是核工业目前所面临的重大挑战。电吸附技术利用双电层原理能高效率吸附
目的:探讨PAX6对小鼠胚胎干细胞(embryonic stem cells,ESCs)的生物学特性的影响及其潜在作用机制。方法:分别用过表达PAX6慢病毒重组质粒载体p-CDH-CMV-MCS-EF1-CopGFR-T2A-Puro和干扰载体pSICOR-shPAX6对mESCs进行感染,对感染后的细胞进行PAX6、GFP免疫荧光染色鉴定;感染效率采用Western blot进行验证;采用CCK
定量磁化率成像在临床中研究和治疗中变得越来越重要,它可以提供一种非创伤性手段,有利于诊断和检测脑血管疾病、神经系统退行性疾病等。传统的定量磁化率成像方法,以相位信
背景:牙齿发育依赖于多种转录因子,调节上皮与间充质细胞之间相互作用。转录因子TCF12为碱性螺旋-环-螺旋(bHLH)转录因子家族成员,可与该家族另一成员转录因子TWIST1形成异源
预浸水法是深厚湿陷性黄土地区采用的一种地基处理方式,具有施工操作简便、处理范围广和可有效消除处理范围内自重湿陷性的特性,对面积较大的浸水坑处理效果尤为明显。本文以
目的研究高分辨磁共振血管成像技术(HR-MRA)在显示正常人大脑中动脉及穿支动脉的可行性。探讨高分辨率磁共振血管成像技术在诊断豆纹动脉供血区梗死患者病因、评价脑梗塞与短
背景:慢性阻塞性肺疾病(COPD),是一种常见的气道疾病,以持续性的气流受限为特征。临床上,通常用FEV1占预计值的百分比评估C0PD的严重程度。但其并不能有效地评估患者症状及疗
超级电容器作为一种极具发展前景的储能装置,具有使用寿命长、充放电效率高等优点。碳材料因来源广泛、导电性良好、稳定性高、结构可调控性好等优点可作为超级电容器电极材