论文部分内容阅读
光载射频链路(Radio over Fiber link,RoF link)在5G通信、深空网络、高清视频信号传输等领域均有着重要的作用,作为微波光子学中的基本单元,其性能也直接决定了包括光电振荡器、射频信号稳相传输在内的一系列应用的性能。光载射频链路的出现解决了传统电子学中信号拉远传输时的损耗及重量问题,同时还带来了抗电磁干扰、带宽大等优点。然而光载射频链路中的一些关键元器件具有非理想的性能,例如电光调制器具有非线性调制特性,会导致经光载射频链路传输后的信号具有一定的交调失真;光纤本身具有一定的温度系数,将使得到达光电探测器端的信号的相位或延迟具有不确定性。如何克服这些问题成了基于光载射频链路的应用性能提升的关键,因而研究光载射频链路的非线性失真抑制以及温度稳定性具有非常重要的意义和价值。本论文围绕非线性失真抑制及温度稳定性两方面展开,取得了以下创新性工作:一.RoF链路非线性分析与抑制本文提出了两种基于光谱相位控制的方案和一种基于非线性杂散信号反相对消的方案,均可有效抑制光载射频链路的三阶交调非线性失真信号,提升链路无杂散动态范围。两种相位控制的方案分别是基于受激布里渊散射的相移特性和Sagnac环的相移特性改变已调光信号的光谱分量相位,使得不同拍频来源产生的三阶交调信号得以反相消除,链路无杂散动态范围分别实现了 10.3 dB和10.0 dB的提升;在基于非线性信号反相对消的方案中,我们使用光学滤波器对相位调制信号进行处理,使得相位调制信号经光电还原后呈现出极强的非线性,通过匹配该高非线性信号和常规链路输出信号的功率和相位,从而达到抑制三阶交调信号的目的。实验结果显示链路动态范围提升13.8 dB,优化后的链路动态范围达到了 109.6 dB·Hz2/3。二.RoF链路中光纤的温度稳定性分析光载射频链路中信号时延的变化主要是因为温度变化导致光纤的折射率及长度发生相应地改变。近年来基于光子带隙等原理由空气纤芯导光的空芯光纤被证明具有极好的温度稳定性,其温度系数主要来源于石英玻璃的热膨胀,可以达到2 ps/km/K。鉴于低温条件在很多地区/实验环境中均有可能存在,而空芯光纤及单模光纤在低温环境下的温度特性还没有被系统的分析过,本文从理论及实验上测定了空芯光纤及单模光纤的温度系数。这里,我们利用液氮冷却系统测量了两种光纤在不同涂敷保护条件下的温度系数,为RoF链路应用于极端环境中提供了有效的数据参考。同时我们还证实了空芯光纤在-71℃具有零温度系数,该特性使得空芯光纤未来有望在精密光学计量中发挥重要作用。三.基于空芯光纤的RoF链路在5G高精度定位中的应用鉴于空芯光纤具有优良的温度稳定性,我们将基于空芯光纤的RoF链路在5G高精度定位中进行了尝试。论文首先明确了空芯-光子带隙光纤工作在其传播时延对温度变化不敏感的波长上时,影响传播时延稳定性的原因为光纤的偏振模色散。在综合偏振模色散、色度色散以及损耗等方面的因素后,确定了适合空芯光纤RoF链路在5G应用背景下应选用1550 nm附近的激光波长。最后实验证明基于空芯光纤的RoF链路可以实现5G基站的被动同步,即使链路的温度变化达到±10℃时,利用观测到达时间差定位法计算得到的定位误差最大为1 cm,远小于基于单模光纤的定位误差(大于20cm)。