论文部分内容阅读
软钢阻尼器是一种新一代可被广泛应用于耗能减震结构体系的利用软钢材料塑性变形来实现阻尼功能的结构部件,具有稳定可靠的工作性能和良好的耗能能力。软钢极低的屈服点可以保证阻尼器在建筑等主体结构在受到地震等外界载荷之前迅速进入塑性变形阶段,从而保证建筑等主体结构的安全。软钢较大的塑性变形能力,可以保证阻尼器可以在地震中能够有足够的耗能能力,可以吸收掉地震中产生的能量,从而保护建筑等主体结构的安全。本文对目前阻尼器中常用的几种金属材料的耗能特性进行了综合分析与对比。通过对不同金属材料的屈服强度,循环效应以及大塑性变形行为进行详细全面的量化分析与对比,发现几种金属材料在剪切载荷作用下,表现出比拉伸条件下更大的变形能力;同时软钢材料相对于其他几种材料在变形能力和耗能上都有着巨大的优势。因此本文以软钢材料为研究对象,对其在多种载荷条件下的大塑性变形行为进行了深入的研究。基于线性优化准则对颈缩效应下的软钢材料单轴拉伸大塑性变形特性进行研究,构建软钢材料单向拉伸精确本构模型及等效剪切应力应变本构模型;对软钢材料单调剪切大塑性变形特性与循环剪切下的材料的循环硬化效应进行研究,构建软钢材料单调剪切与循环剪切本构模型方程;依据考虑初始屈服强度演化的双屈服面模型及循环载荷下结构的多轴效应,对本构模型进行优化修正,最终构建准确描述软钢阻尼器大塑性变形行为的精确本构模型。同时,根据建立的材料精确本构,提出双曲线简化本构模型,并对其精确性进行验证。本文建立的阻尼器结构精确数值分析模型及材料精确本构模型,实现了阻尼器结构小变形至大塑性变形下力学特性及变形行为的准确模拟,对准确评估阻尼器耗能性能和结构稳定性分析具有重要意义。同时,本文提出的精确本构详细的建模过程,对今后材料的大塑性本构精确建模具有重要参考意义。