论文部分内容阅读
在木材工业中,人造板和造纸过程中木纤维加工消耗功率较大问题一直是困扰本行业的一个瓶颈。本着节能降耗的原则,通过对传统纤维加工方法及功耗分析,将微纳米技术、木材细胞学、超精加工理论、仿真技术等一系列现代分析手段运用到木纤维的形成过程中,木材的细胞直径相对较大,从现有的技术水平和实际应用的意义上讲,木材加工的多数领域只能达到微米或亚微米水平。本文以微米作为研究应用的主体,提出了微米木纤维的切削理论,提出了微米木纤维切削降低能耗的理念。由于微米木纤维的尺寸量级己经小于传统木材切削机械系统的间隙允许范围,利用传统的木材切削机械系统已经不可能完成这些任务。通过微米小纤维数学模型的建立和计算机仿真,模拟细胞加工的切削过程,并以此作为设计加工原理性实验台以进行实验验证的基础数据,为最终指导工业化提供实验数据。并通过数学模拟和计算机模拟,将微米木纤维的研究上升到了微观结构的研究中,并通过对纤维切削方式和形状的变化来分析切削力的变化,科学地解释传统木纤维加工消耗的能源高、产生的纤维质量差的本质原因。并以示例对微米木纤维的加工功率进行计算,将其与传统加工方法的功率进行对比,得出以微米级机械法加工木纤维耗能远远低于热磨法,且可以加工出质量较高的微米级长丝木纤维。本文还提出利用微米木纤维,在普通设备上压出密度超过1g/cm~3的高度和高强度板的具体构成机理,研制成功具有我国自主知识产权的超高强度微米长纤维定向高密度人造板(简称MFHB)。利用木材细胞学剖分理论进行MFHB计算机模拟,研究形成微米木纤维的劈裂机理,利用纳微米技术解决MFHB强度提高的问题。创建MFHB和人造板在复合材料力学和各向异性条件下的强度参数计算的公式及理论,用木材细胞学和微观力学的方法对人造板强度参数进行描述,形成新的人造板微观力学强度计算理论。