论文部分内容阅读
加氢裂化技术投运至今,反应流出物空冷器(简称REAC)及其相联管路的腐蚀失效,便一直是制约其安全稳定运行的核心问题之一,从设计制造到检测评估,从腐蚀原因的评判到腐蚀垢物的分析,每一个相关环节的研究都成为国内外相关领域讨论的热点。近年来,随着重质、含硫原油加工比例的不断增加,特别是对环保型喷气燃料油、柴油和润滑油等清洁油品需求的日益增多,促使许多装置相继进行了高硫扩能改造,随之发生的多起REAC管束泄漏爆管事故,严重威胁了装置和人身的安全。NACE T-8委员会、UOP公司、API协会、JIP等机构对REAC管路系统的失效机理进行了深入的研究。从研究结果看,REAC及其相联管路的腐蚀影响因素和失效机理非常复杂,其腐蚀受一系列综合因素的影响,其中反应流出物的流动状况(主要是三相介质的流速)和腐蚀性介质的浓度分布(主要是NH4HS和NH4Cl的浓度分布)是两个关键因素。因此,在工业防腐措施上,主要控制介质腐蚀因子Kp值的大小和注水操作,实践证明,注水可以有效地防止NH4HS沉积堵塞管道并且降低反应流出物中NH4HS的浓度,在具体操作上,有很多的实践经验可供参考,主要集中在水质要求、注水量的大小、进出口管路对称性布置等方面,然而,对注水点位置的研究却十分少见,为了最大限度的满足工业注水操作的最优化,在满足工艺和设计结构等技术要求的前提下,最大限度的减轻REAC及其相联管路的腐蚀,本论文从实验研究的角度,提出了一套模拟工业现场注水点位置改变对腐蚀影响的研究方案,并通过实验,得出相关结论,从而为生产中设备的腐蚀防护做出贡献。另外,本论文在REAC及其相联管路腐蚀机理研究的基础上,具体针对某公司加氢裂化高压空冷系统的多相流介质流动及腐蚀情况进行CFD数值模拟和无量纲分析,得到以下三个方面的结论:1、根据介质流速与管束剪应力之间的关系,指出管束最大剪应力的位置,从而确定最大可能失效的区域;2、不同衬管结构对腐蚀的影响;3、针对某一起管束泄漏事故进行模拟分析,为此次事故原因分析提供理论依据。