藕淀粉与超微全藕粉的制备技术及性质研究

来源 :西南大学 | 被引量 : 0次 | 上传用户:liu1513
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
莲藕(Nelumbo nucifera Gaertn),含有丰富的淀粉、蛋白质、维生素、铁、钙、生物碱等多种对人体健康有益的物质,具有较高的食用和药用价值,是一种用途十分广泛的水生经济作物。但莲藕采收后易出现褐变,本研究希望找出比较有效的无硫抑制剂控制莲藕的酶促褐变过程,并结合干燥脱水技术和超微粉碎技术,将莲藕加工成超微全藕粉,既有利于莲藕的贮藏和运输,又最大限度的保存了莲藕的各种营养成分。不同粒度的超微全藕粉功能特性的研究,有利于理解超微全藕粉在加工、储存以及使用过程中的质构特征,为解决全藕粉深加工产品的糊化和老化等问题提供理论基础,并为全藕粉产品的品质控制和加工工艺提供参考,指导其在食品工业中的应用。实验研究结果如下:(1)鲜切藕片护色技术研究鲜切藕片的最佳护色剂组合为:柠檬酸0.15%,抗坏血酸0.15%,d1-苹果酸0.25%,L-半胱氨酸0.15%,在加工过程中结合热烫(60℃)可共同抑制酶促褐变的发生。(2)鲜切藕片干燥脱水技术研究应用热风干燥、微波干燥、先微波后热风、以及真空冷冻干燥四种常用的干燥方法对鲜切藕片进行脱水干燥试验,采用干燥速率、碘蓝值、白度和复水性四个指标综合评定干燥后的产品质量,最终确定了热风干燥法是鲜切藕片的最佳干燥方法,并通过正交试验确定了薄层热风干燥的最佳条件为:热风温度70℃、风速0.3m/s、装样量40g。在此条件下,薄层热风干燥数学模型符合单项扩散模型:MR=0.857412114exp(-0.050102613t)(R~2=0.96537):通过该模型得到的预测值和真实测定值的比较,表明该方程能够较好的模拟该条件下鲜切藕片的干燥过程。(3)藕淀粉与超微全藕粉的制备技术通过试验研究,确定了藕淀粉采用传统水提法制备,超微全藕粉首先由热风干燥的藕片经粗粉碎后,再通过翻转式振动碾磨混炼机,进行超微粉碎,再用不同目筛筛分而制得。1号样品藕淀粉与超微全藕粉1-淀粉,1-100、1-200、1-300的得率分别为3.23%、34.3%、47.0%、15.3%;2号样品藕淀粉与超微全藕粉2—淀粉、2—100、2—200、2—300的得率分别为3.71%、30.2%、47.6%、19.4%;3号样品藕淀粉与超微全藕粉3—淀粉、3—100、3—200、3—300的得率分别为2.64%、35.3%、38.7%、和22.1%。(4)藕淀粉与超微全藕粉颗粒结构特性的研究藕淀粉颗粒表面光滑,无裂纹,少量破损;大多数颗粒呈棒状,颗粒大小在40μm左右,少部分淀粉颗粒呈椭圆形或圆形,颗粒大小在10—25μm左右,极少数为多角形,有偏心环纹;藕淀粉颗粒偏光十字明显,颗粒较大的棒状淀粉,脐点位于淀粉颗粒的一端,其十字不规则,大部分呈“X”形;颗粒较小的椭圆形或圆形淀粉,脐点位于淀粉颗粒中央,呈垂直十字形或斜十字形,部分呈“X”形;全藕粉经过超微粉碎后,藕淀粉原有的颗粒结构大多被破坏,只能观察到极少完整的淀粉颗粒,且破损的淀粉颗粒与其他的颗粒黏附在一起,形成小的粒子团;超微全藕粉,只能看到部分未被破坏的藕淀粉颗粒的偏光十字;藕淀粉颗粒的结晶结构为B型;超微粉碎后全藕粉呈现A型结晶结构;超微全藕粉随着粒度的减小,衍射峰强度降低,半峰宽增加,结晶区域减小,而非结晶区域增大;1号样品1-淀粉、1-100、1-200、1-300的结晶度分别为:35.77%、25.61%、23.77%、21.81%;2号样品2-淀粉、2-100、2-200、2-300的结晶度分别为:32.30%、28.72%、24.28%、22.49%;3号样品3-淀粉、3-100、3-200、3-300的结晶度分别为:32.96%、28.94%、26.48%、25.76%。1号样品1-淀粉、1-100、1-200、1-300的粒度80%分别分布在19.652μm-73.045μm、8.473μm-135.541μm、8.7μm-88.907μm和7.395μm-56.966μm之间;2号样品2-淀粉、2-100、2-200、2-300的粒度80%分别分布在18.74μm-66.371μ、14.07μm-213.55、7.895μm-63.463μ和7.433μm-53.244之间;3号样品3-淀粉、3-100、3-200、3-300的粒度80%分别分布在17.616μm-76.813、9.979μm-202.63、7.196μm-56.888μm和7.444μm-53.697μm之间。2号淀粉颗粒相对较小,1号淀粉和3号淀粉粒径相近。超微全藕粉100目样品粒径远大于淀粉粒径,200目和300目的样品粒径小于淀粉颗粒。(5)藕淀粉与超微全藕粉糊化特性的研究不同粒度的超微全藕粉,在不同条件下黏度变化趋势与相同品种的藕淀粉相似。但是由于全藕粉中复杂成分之间的相互作用,超微全藕粉的糊化温度高于藕淀粉,另外由于超微粉碎过程已经破坏了淀粉的颗粒结构,所以超微全藕粉糊化所需要的能量低于颗粒完整的藕淀粉;超微全藕粉的溶解度远远高于相应的藕淀粉;不同粒度超微全藕粉的溶解度顺序为为300目>200目>100目;超微全藕粉的膨胀度高于淀粉,不同粒度超微全藕粉的膨胀度顺序为100目>200目>300目;淀粉的冻融稳定性远远高于超微全藕粉,不同粒度的超微全藕粉的冻融稳定性顺序为100目>200目>300目。超微全藕粉的粘度低于藕淀粉,但其稳定性好于藕淀粉;不同粒度的全藕粉中粘度的热稳定性和冷稳定性都表现为100目<200目和300目,200目和300目之间的稳定性差异不明显。藕淀粉在较低浓度6%时即可形成较好的凝胶,超微全藕粉则要在较高浓度11%时才能形成凝胶,且凝胶强度低,但超微全藕粉形成的凝胶弹性较好。(6)藕淀粉与超微全藕粉糊老化特性的研究超微全藕粉与藕淀粉糊在放置过程中透光率降低,超微全藕粉糊透光率低于藕淀粉;与藕淀粉糊相比超微全藕粉糊更容易沉降,不同粒度超微全藕粉糊的沉降速度大小为300目>200目>100目;超微全藕粉与藕淀粉糊或凝胶在存放过程中,碘蓝值和α-淀粉酶酶解率都降低,说明在糊或凝胶中游离淀粉含量降低,淀粉老化在缓慢的进行,同时在存放过程中,超微全藕粉与藕淀粉凝胶的凝胶强度增加,凝胶弹性降低。本论文的创新之处在于:(1)对鲜切藕片进行了四种脱水干燥工艺的研究,优化了热风薄层干燥工艺参数,建立了干燥数学模型,并研究了超微全藕粉的生产工艺,获得了不同品种、不同粒度的超微全藕粉产品。(2)在国内首次系统的研究了不同品种藕淀粉与超微全藕粉的理化性质、颗粒结构和功能性质,为其在食品工业中的应用提供理论依据。本论文鲜切藕片护色部分、热风薄层干燥部分以及藕淀粉与超微全藕粉颗粒结构特性研究部分已分别在《食品工业科技》和《食品科学》上发表。
其他文献
进入21世纪,我国高等教育投资体制发生了重大变化,原有的国家包办高等教育的单一体制和模式已被打破。随着高校体制改革的深入,自1999年起的公立高校连续扩招,极大地满足了人
本文以商漫高速公路岩质边坡工程为依托,针对该公路沿线岩质边坡状况,开展了国内外相关资料调研和工程调查,对各边坡的稳定性影响因素、稳定性状态及防护方案进行了较深入的
<正>据国家食品药品监督管理总局官网消息,2015年7月至9月,国家食药监总局对花生油开展了国家专项监督抽检。本次国家食药监总局共抽检样品200批次,合格样品195批次,不合格的
在采集和初步鉴定标本的基础上 ,对湖北省九宫山藓类植物的垂直分布规律进行了初步的分析和研究。结果表明 ,九宫山藓类植物共 32科 ,98属 ,2 6 5种 ,其垂直分布明显分带 :5
我国的美术教育,由于各地方经济发展和文化存在较大的差异,因此发展极不平衡.我国20世纪90年代的美术课程是不同地区共同实施国家统一安排的美术课程,美术教科书几乎成为唯一
<正>我国有确切纪年始于公元前841年。在这之前的史事年代均要通过推算得到。牧野之战是周武王伐纣灭商的决定性战役。这次大战发生在哪一年,是确定商朝最后一年和周朝开国元
化学工业对资源、能源的需求量高,对环境的负效应大。化学工业园区化可以在一定程度上提高原料的利用率,有利于“三废”的综合治理,如何更好的发挥园区的优势,解决化学工业与
本文讨论的产品责任损害赔偿范围,是产品责任法中的一个基本问题。随着全球化进程的进一步加快和科学技术的持续进步,产品种类不断增多,日趋复杂,与此同时,产品也在全球市场
移动自动闭塞系统可以有效缩短列车在区间和车站运行的间隔,提高轨道线路的通过能力,其已经成为列车信号控制系统的发展趋势。由于移动自动闭塞系统下列车之间运行间隔大大缩
研究背景铜广泛存在于土壤、水中,海洋和陆地的动植物体内都含有丰富的铜,并且金属铜被广泛的应用于各行各业,铜化合物还是重要的杀菌、消毒的化学物质。随着科学技术的发展,