基于数据挖掘的电动汽车充电桩故障预测方法研究

来源 :华北电力大学(保定)   | 被引量 : 0次 | 上传用户:future_007_007_007
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着国内外电动汽车行业的快速发展以及电动汽车数量的迅猛增长,使得对电动汽车充电桩的需求量日益增大,所以对充电桩的管理和维护就成了充电桩运营的一个重要问题。由于电动汽车充电桩市场存在信息管理不够完善、维修人员意识淡薄、缺乏及时有效应急措施等问题,无法全面及时对电动汽车充电桩质量进行评估,从而造成充电桩故障频繁发生,造成了大量的损失。电动汽车充电桩可靠性问题不容忽视,因此,寻找一种有效的方法对电动汽车充电桩故障进行预测显得尤为重要。
  本文首先介绍了电动汽车充电桩的研究背景以及对充电桩进行故障预测的重要意义,并对比调研了电动汽车充电桩故障预测和故障预测方法的发展现状,指出目前国内外故障预测方法中存在的优缺点,同时强调了故障预测技术在电动汽车充电桩故障预测领域研究的高需求。研究分析了常用的三种故障预测技术,对基于数据驱动故障预测技术中的几种算法做了详细的对比分析,对其优缺点进行了详细说明,并选取决策树算法作为本文的故障预测算法。
  然后,本文利用C4.5决策树算法搭建了一个分类预测模型,并用标准UCI数据集对构建的模型进行训练和预测,但由于原始C4.5决策树算法存在条件属性间相互依赖这一缺陷,影响了最终预测精确度,针对这一缺陷本文对原始算法进行了改进。仿真对比实验结果表明:改进后的算法搭建的模型提高了预测结果的准确度,降低了运行时间复杂度。
  最后,针对电动汽车充电桩故障发生缺乏有效预防措施的问题,本文利用C4.5决策树算法搭建了一个充电桩故障预测模型,将收集到的K1K2驱动信号、电子锁驱动信号、急停信号、门禁信号、电压的总谐波失真、电流的总谐波失真6个参数进行分析处理,一部分作为训练数据,一部分作为测试数据来验证故障预测模型的预测准确率。并且用改进前和改进后的C4.5决策树算法分别建立故障预测模型,最后的仿真实验对比分析验证改进后的C4.5决策树算法建立的模型能更加有效地对充电桩故障进行预测。
其他文献
随着信息时代的到来,网络改变了人们表达观点的方式,人们开始主动地发表自己的意见和评论。在这种趋势下,网络上出现了越来越多的文本资源。通过挖掘和分析这些文本资源中的情感信息可以了解人们对其他人、事、物的看法,具有十分重要的实际应用意义。当下在情感分析中主要使用的方法包括基于情感词、基于机器学习和基于深度学习的情感分析方法,其中深度学习的方法由于其自主学习能力和在大规模数据上表现出的优势,成为当下最热
学位
随着社会生产的快速发展,对解决优化问题的需求越来越迫切。确定性优化算法在许多优化问题上的效果不好甚至无法使用,而演化算法是解决此类问题的重要工具。近年来,许多演化算法包括群智能算法被陆续提出。然而,没有免费午餐理论指出没有任何一种优化算法可以在所有类型的优化问题上都表现的比其他算法好。还有研究表明,存在对某一种算法来说比较困难的问题,对另一种算法却比较简单的情况。因此,不同优化算法的集成或协同以及
学位
近年来,随着Web2.0的发展和移动便携式设备的普及,脸书、微信等在线社交网络如雨后春笋般兴起,它的发展使得网络世界向现实世界的无限靠近成为可能,其中微博类应用(如新浪微博、Twitter等)的使用率遥遥领先。在线社交网络中,用户可以管理他们的社交网络和社交身份,发布各种话题信息,也可以通过好友关系获取其他用户发布的信息。由此产生的大量文本数据吸引着越来越多的学者对其展开研究,文本情感分析成为社交
学位
水下传感器网络是利用水下传感器节点感知水下相关信息,并通过水声通信媒介将传感器节点所感知到的数据信息传送至数据处理中心,并将其广泛应用于水下资源勘探、海洋地理数据收集、导航和控制、灾难预防、军事安全等领域。  根据水下传感器网络分层结构特点可知,能量消耗主要发生在数据链路层和网络层,影响能量高效性主要因素有:(1)引入解决信道访问冲突机制产生新的额外能耗,其中包括空闲侦听、额外控制帧开销以及由时空
社会网络是指社会实体通过社会关系构成的多种类型的复杂社会系统,是复杂网络在现实世界中的应用。由于社会网络结构复杂、特征多元化、形成方式差异性会导致社会网络中各节点的重要程度不同。将那些对整个网络的结构、功能或者传播过程等产生较大影响的一类特殊节点称之为重要节点,一旦找到这类节点并全部摧毁,将阻碍社会网络的连通,甚至会引起社会网络的瘫痪。因此,节点重要性度量研究对研究网络鲁棒性、脆弱性具有重大的理论
学位
随着国家对电力市场改革的推进及分布式发电技术的飞速发展,分布式发电设备将迅速进入各个小区,大量的电能用户或电能企业将购买分布式发电设备进行电能的自产自销,而大量分布式电能产消者的产生将加大电网负担。当今相关部门对分布式电能产消者所产出电能进行电能补贴的形式购入大电网,该情况下电能补贴价格较低且不够灵活,将打消分布式电能产消者的产能积极性。因此,相关部门鼓励分布式电能产消者完成电能的本地消纳,而想要
学位
近年来国民经济迅猛发展,科技为人们的生活带来了很多的便利,而其中互联网已然成为人们日常生活中最为便捷的工具之一。在各类互联网应用中,智能推荐作为具有个性化特点的技术得到了广泛的应用,如何恰当地使用推荐算法为用户进行个性化服务具有实际应用意义。文化旅游作为精神文明建设的主要方式之一,使用推荐算法可以增强用户的文化体验,本课题对大型博物馆室内路径推荐的研究能够很好的解决个性化出行的问题。  本文主要研
学位
随着能源危机以及大气污染的加重,清洁能源的应用越来越得到广泛的关注。风能作为一种清洁能源,风机装机量也在日益增加。风电机组具有故障率较高,故障停机时间长的特点。在风电机组的各个部件中,风机叶片长期处于高空中,与空气发生作用的时间最长,极易出现裂纹等细小的缺陷,不易检测。  首先本文通过对相关文献的研究,对国内外对风机叶片的主要检测手段进行了总结与讨论。目前国内外的检测方法以接触式检测为主,主要有振
学位
目前我国电网的发展越来越趋于智能化和自动化,这些技术的发展使得计算机视觉技术对电力设备的检测效率大大超越了传统技术对电力设备的智能巡检和在线检测。绝缘子、输电杆塔作为输电线路中的关键元件,同时也易产生故障,这些元件的故障将会对电力线路的安全运行产生较大影响,对生产和生活造成了不便。因此,开展对电力元件的定期监测巡检具有较大的现实意义。通过输电线路的航拍图像对线路元件进行故障分析已成为近几年的研究热
学位
绝缘子是输电线路中的重要设备,其运行状态直接影响电力系统的稳定性和正常运行。因此需要采用智能化的方法对无人机获取的大量绝缘子图像数据进行处理和分析,为电力巡检提供可靠的参考信息。本文针对绝缘子故障分类这一任务,从以下两个方面展开研究:  (1)绝缘子故障分类的前提是在绝缘子图像上准确地识别和定位出绝缘子。因此,本文首先对基于卷积神经网络的绝缘子识别算法展开研究。针对使用FasterRCNN目标检测
学位