移动边缘计算中的分层资源部署策略研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:tnngx123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
伴随着移动互联网和人工智能的迅速发展,各类移动终端应用越来越大型化,对于计算资源的需求也越来越高。由于移动终端的设备和体积限制,其计算能力和能耗都无法完美地支撑应用在本地运行。传统的云计算范式在处理计算任务时,通常存在较高的传输时延,因此无法满足时延敏感型应用的时延需求。由此,研究者提出了移动边缘计算,其核心思想是将云计算的部分处理能力下沉至距离用户更近的网络边缘端,从而可以很好的解决以上问题。显然,使用移动边缘计算技术的前提是在网络边缘节点部署一定的计算资源,因此,移动边缘计算网络中的资源部署问题非常重要。本文针对平坦型和分层型这两种网络结构下的边缘计算资源部署问题展开系统的研究,目标是提高资源部署的有效性,提升整体边缘计算系统效率。平坦型网络结构主要是基于无线城域网和Ad Hoc自组织网络所构建的网络模型,其各个网络节点按照一定的拓扑形状连接形成点对点的对等结构。基于平坦型网络模型,建立了资源部署和任务调度的模型,其中,资源部署决定在什么位置部署多少资源,任务调度则将随机到达的用户任务实时地分配到对应的资源上进行。基于上述模型,构建了资源部署和任务调度的联合优化问题,其目标是在保证用户服务质量的前提下,使系统以尽可能小的部署成本,获得尽可能大的任务收益,实现系统效益最大化。分析表明,该问题是一个NP-Hard的非线性优化问题。通过对该优化问题进行等价变换,将原始问题转换为一个等价的线性规划问题,从而可以利用常规算法求解最优部署策略,同时提出了三种低复杂度的次优部署策略。仿真结果显示,三种次优部署策略均能实现较好的系统性能。分层型网络结构主要是基于以5G为代表的蜂窝无线接入网所构建的网络模型,其网络节点连接根据不同的功能形成一种多层的树形结构,如基站作为叶子节点直接为用户提供无线接入、汇聚节点作为倒数第二级根节点汇聚多个叶子节点、核心节点作为最后一级根节点汇聚多个基站节点。基于分层型网络模型,建立了资源部署和任务调度的模型,并考虑了同层级节点之间可以共享资源和同层级节点无法共享资源两种不同的机制。基于上述模型,构建了联合优化问题,通过分支定界方法求解最优策略。通过仿真实验发现,有共享机制的分层部署策略能以更低的部署成本实现更高的系统效益和更小的时延代价,且系统稳定性更强。
其他文献
随着无线设备和无线服务的爆炸式增长,现有的无线射频频谱资源稀缺,无法满足人们对高速率的需求。可见光通信(Visible Light Communication,VLC)具有丰富可见光频谱资源,利用发光二极管(Light Emitting Diode,LED)来发送无线数据,是未来有潜力技术之一。但是,LED限制带宽会引起码间干扰,从而降低误码率性能以及限制数据传输速率。直流偏置光正交频分复用(Di
无人机由于具有便携性、高效性和安全性,被广泛应用于目标搜索领域。但是由于单无人机存在续航有限、灵活性差等缺点,现广泛使用多无人机进行集群式搜索。集群搜索有着更高的搜索效率,也面临着更多的挑战。如何针对不同的场景具体地设计无人机集群的分布式协同搜索算法是一个亟待解决的问题。本文围绕着基于群智的分布式协同控制的主题,针对无人机集群对未知环境中的静态目标的搜索问题开展分布式搜索算法的设计和验证,突破了传
分布式多智能体集群运动控制技术,是未来大规模无人机集群搜索、大规模自主编队表演技术、超远距无人机集群中继通信等一系列应用场景的技术基石。如何让分布式集群拥有超强避障能力,更是现有研究中的重点。现有的比较成熟的方案是以建模生物体集群运动为核心出发的,通过将障碍物比作虚拟的智能体来实现避障,这种方案又被称为Flocking算法。但是这种方案只能适合于凸类型和部分非凸类型的障碍物。针对狭窄型的只能允许极
移动边缘计算(Moblie edge computing,MEC)在处理一些新型的计算密集型或时延敏感型的任务时已经展现了其独有的优势。通过计算卸载及服务迁移,用户终端所产生的任务可以由边缘设备进行处理,从而打破了终端设备有限的资源与能量带来的限制。然而,MEC系统的异构性、无线网络环境的动态性以及终端用户的移动性等均给计算卸载及服务迁移策略的设计带来了很大的挑战。本文旨在通过对异构边缘网络中计算
随着无人机技术的不断发展,其所具有的低成本、高灵活性等特点为解决各种实际问题提供了更多的可能性,在环境探测,农业植保等领域都得到了广泛应用。本文考虑一种未知环境探索情形,在全球定位系统受限的情况下,同时定位和建图(Simultaneous Localization And Mapping,SLAM)算法提供了无人机主动飞行的核心技术。在大规模复杂环境中,单架无人机由于其性能和探索范围局限性,不能快
感知技术在交通、军事、农业等领域具备极其重要的使用价值,且在低时延、大容量、高速率的情境下,越来越多的应用场景对环境感知提出越来越高的要求。在感知层面中,目标的检测和跟踪具有举足轻重的地位,其相关的技术成果已渗透到人们生活的方方面面。而当探测环境比较复杂时,使用传统的感知手段和方法来完成目标的检测与跟踪从过程上分析比较复杂,且由于目标具有一定的空间结构,以往的处理方法经常忽略目标的多散射点模型,因
信号的检测与识别被广泛应用于频谱监测、军事电子对抗、信号解密、干扰探测等领域。随着通信环境的日益复杂,传统的单信号识别技术无法应用于电磁干扰严重的信号混叠场景。如何消除干扰、频偏、相偏、衰落等带来的影响,识别出混叠信号中的未知信号源是一个亟待解决的难题。传统的盲信号识别算法识别精度依赖于盲源分离效果,然而复杂通信环境下的非充分稀疏混合信号难以分离,且无法适应环境的动态变化。本文围绕基于机器学习的盲
现代社会亟需新一代的移动通信技术,以满足用户对低时延、广覆盖、高速率的需求。与常用的半双工相比,全双工提高了日渐稀缺的频谱资源的利用率,近年来得到了广泛研究。然而由于全双工在自干扰消除能力不佳时性能不及半双工,混合双工,即全双工和半双工之间进行选择切换成为了研究的热点方向。协作通信是一种将多个无线设备通过协作协议统一控制起来,取得比起独立工作更好性能的通信方式。多个彼此进行协作通信的中继被称为协作
随着信息技术的高速发展,无人智能系统和移动智能机器人已经逐步走入到了人类日常生活中,并在混合现实、应急救援和无人驾驶等任务中发挥着重要作用,其中的关键技术即时定位与地图构建(Simultaneous Localization And Mapping,SLAM)引起了研究者们的广泛关注。视觉SLAM系统以其成本低和容易部署的优势,用于服务人类日常生活的可能性更大,逐渐成为了SLAM系统中的一个研究热
近年来,随着海洋事业的发展,各国对于水声通信系统的研究越来越重视。水声前导信号的检测是水声通信中一个重要模块。前导信号的误检和漏检一方面会导致通信的失败,另一方面还会对水声通信设备的寿命造成影响。而水声信道作为目前最复杂的信道之一,其多径效应严重、多普勒效应明显、干扰种类繁多的特点导致水声前导信号的检测困难。本文从两个方面研究了前导信号的检测和识别问题,并对所提出的方法进行深入的理论性能分析,该理