【摘 要】
:
中医是我国传统医学的瑰宝,其在漫长的发展与演变过程中,逐步形成了一套对疾病进行审证求机、辨证施治的学科理论体系。在新冠疫情肆虐全球的时代背景下,中医以其独到的方法体系与施治特点在治疗新型肺炎疾病和预防疫情传播上起到了至关重要的作用,得到了国内外医学专家广泛的关注与高度的赞扬。在中医长期施治于临床的过程中,对不同疾病相匹配的类症鉴别、病因病机、临床特点有了较为系统的认识,形成了有待于挖掘与应用的海量
论文部分内容阅读
中医是我国传统医学的瑰宝,其在漫长的发展与演变过程中,逐步形成了一套对疾病进行审证求机、辨证施治的学科理论体系。在新冠疫情肆虐全球的时代背景下,中医以其独到的方法体系与施治特点在治疗新型肺炎疾病和预防疫情传播上起到了至关重要的作用,得到了国内外医学专家广泛的关注与高度的赞扬。在中医长期施治于临床的过程中,对不同疾病相匹配的类症鉴别、病因病机、临床特点有了较为系统的认识,形成了有待于挖掘与应用的海量中医知识。这些知识散落在各类中医学典籍、研究文献、临床数据中。随着人工智能时代的到来,利用语义建模相关技术,围绕中医领域进行知识表达、知识推理、知识共享与应用成为了一个值得关注和研究的方向,对中医学科的传承与发展有着极为重要的意义。本文对中医学科理论体系与中医本体的应用需求进行深入梳理与调研,并参考中医专家的指导与建议,完成面向中医领域的本体构建与知识发现的应用研究。首先,对本体工程中数据层与模式层的构建方式进行宏观设计,针对异构的中医数据源,提取确立中医本体模型中重要的概念类别以及与之相关的语义关系。并结合本体建模方式,通过OWL(Web Ontology Language)建模语言完成中医本体模式层的构建与实例层的数据填充,构建起一套涵盖中医内、外、妇、儿科,能展示其辨证施治特点的本体模型。该本体模型能够支持不同维度的中医语义查询,在辅助中医施治于临床的过程中具有重要的借鉴价值。其次,以本文构建的中医本体模型为契机,对语义推理方面的技术进行详细的梳理,设计编写契合中医本体工程的SWRL(Semantic Web Rule Language)推理规则。并基于Hermit推理机完成对中医学科内在知识结构与隐含信息的挖掘与推理,为中医学科的丰富与发展提供新的视角与可能。最后,提出了一套异构数据的融合方案,对异构的中医数据源进行融合与转换。并依循中医语义关系将融合后的数据映射到Neo4j图数据库中,构建起一套蕴含海量信息的中医知识图谱。为用户提供了一种从“辩证关系”出发,快速分析检索中医知识的有效途径。为了简化基于Cypher的查询过程,以构建的中医知识图谱为主要数据来源,采用B/S架构,设计完成一套中医知识检索系统。
其他文献
随着无线网络不断增长的业务需求,蜂窝架构频谱资源受限,回程容量将成为系统瓶颈.为了缓解这种瓶颈,考虑一种特殊的异构蜂窝网络,结合缓存节点的部署、用户位置分布、用户对请求内容的偏好以及缓存节点有限的存储空间,对内容存储及用户关联联合优化问题进行建模分析.将目标函数建模为请求时延的最小化,简单证明该问题是NP-hard的,并设计了基于改进KM(Kuhn-Munkres)的内容放置策略.最后,通过实验比较了该算法与其他基准方案的性能.
随着移动通信技术的不断发展以及5G时代的到来,人们对于移动数据流量的需求不断增加,移动互联网也在极大地满足人们在任意时间、任意地点快速便捷地接入互联网的需求;使用智能设备和移动业务的用户数量也在持续增长。目前,中国有着世界上最大的移动通信市场,伴随着激增的移动用户量,移动通信运营商需要更智能地管理无线网络,以提供更加优质的服务,而准确的预测蜂窝网络基站的流量,能够有效地推动无线网络的智能化建设。伴
带平衡约束的矩形布局问题源于卫星舱设备布局设计,属于组合优化问题.深度强化学习利用奖赏机制,通过数据训练实现高性能决策优化.针对布局优化问题,提出一种基于深度强化学习的新算法DAR及其扩展算法IDAR.DAR用指针网络输出定位顺序,再利用定位机制给出布局结果,算法的时间复杂度是O(n3);IDAR算法在DAR的基础上引入迭代机制,算法时间复杂度是O(n4),但能给出更好的结果.测试表明DAR算法具有较好的学习能力,用小型布局问题进行求解训练所获得的模型,能有效应用在大型问题上.在两个大规模典型算例的对照实
针对海鸥优化算法(SOA)求解精度较低、迭代后期收敛速度慢、易陷入早熟收敛的缺点,提出一种基于混沌映射和t-分布变异改进的海鸥优化算法(CtSOA),采用tent映射策略使初始海鸥种群均匀分布在搜索空间中,采用t-分布变异策略平衡算法的探索和开发能力,综合两种改进策略提高了算法的全局搜索精度和跳出局部极值的能力.在14个测试函数上分别与SOA、其他五种元启发式算法、单一策略改进的SOA以及其他学者改进的SOA进行对比,实验结果表明,综合两种改进策略的CtSOA具有更优的收敛精度和更快的收敛速度.
现在已经是信息化时代,随着当下时代计算机及网络技术突飞猛进的发展,几乎每个公司都会用到不同的公司内部办公管理系统,为人员管理、办公流程、公司信息发布等方面都提供了极大的便利,办公管理系统不仅能够有效地提高各部门的办公效率,还能够更快速的实现各个部门之间的信息流通。本课题设计的流程管理系统通过在流程模板管理页面对流程进行配置,自行定制出执行审批的部门和审批的规则,可应用于各行各业。除流程管理功能外,
多台无人机协同完成野外传感器数据采集的工作中,建立具有精确能耗模型的多无人机路径规划问题模型尤为重要.提出了带转角能耗多无人机路径规划问题(multi-UAV path planning with angular energy consump-tion,MUPP-AEC)模型,该模型考虑了无人机在加速、减速、匀速、转角等飞行条件下的能耗差异.针对MUPP-AEC的特点,提出目标空间聚类离散头脑风暴优化算法(discrete brain storm optimization algorithm in obj
现有关键蛋白质识别算法对生物信息考虑不全面、识别准确率亦有待提高,针对此问题,提出一种高效关键蛋白质识别算法PDWS.首先,结合由亚细胞定位信息获取到的蛋白质位置和蛋白质相互作用网络边聚类系数构建加权网络;其次,依据蛋白质所处亚细胞位置,提出亚细胞定位区室子网参与度指标;最后,融合亚细胞定位区室子网参与度和蛋白质复合物子网参与度指标,多维度度量蛋白质关键性.在DIP和Krogan两个标准数据集上的实验结果表明,PDWS算法性能优于PeC、PCSD等已有算法,可识别出更多特定结构的关键蛋白质,且识别精度分别
互联网原始设计主要用于可信环境,侧重于网络的互连,而缺少对网络安全的考虑。伴随着互联网逐渐走向商用,其面临着严重的安全威胁,而“外挂式”安全机制虽能解决特定安全问题,但却使得网络协议越发臃肿,由此产生了内生安全网络研究。其中,网络流量安全是内生安全的一个重要方向,如何在高效、精确、低成本又兼顾用户隐私的情况下,识别出网络流中的恶意流量显得尤其关键。本文针对内生安全需求,分析了现阶段网络中恶意流量识
针对机动通信中通信节点可移动和复杂地形影响通信信号等特点,提出不规则地形条件下处于无线宽带工作模式的机动通信系统基站选址规划方法.首先,通过分析机动通信场景确定站址规划的数学模型;其次,使用改进的N S GA-Ⅱ算法求解选址方案;最后,根据用户需求选定最佳方案.仿真实验结果表明,该方法能够减小有效覆盖损失和通信中断风险,改进后算法能够保证优化过程的多样性并改善优化效果,场景参数和用户偏好都会对规划的最终结果产生影响.所用方法能够综合考虑系统的覆盖能力和机动特性,为用户推荐符合需求的方案并快速适应需求的变化
随着移动智能的发展,人们对精确的室内定位技术和完善的基于位置服务的需求日渐迫切。以精准室内定位技术为基础的位置服务能够在商业、便民服务、安全等多领域广泛应用,是智慧城市建设的重要发展方向。常见的基于Wi-Fi接收信号强度的室内定位方式存在着信号波动大、采样和维护成本高、定位精度差等问题。近年发布的IEEE 802.11mc标准支持Wi-Fi精确时间测量(Wi-Fi Fine Time Measur