论文部分内容阅读
声子晶体是一种周期性排列结构的复合材料。当弹性波在声子晶体中传播时,由于其结构上周期性的排列,存在一定频率范围的弹性波将会被阻碍而不能在其中传播,这个不能传播的弹性波的频率范围就叫做声子晶体的带隙。一般来说,当构成声子晶体的材料和声子晶体的拓扑结构确定了之后,声子晶体的带隙也就随之确定了。面对目前复杂的工程应用环境,声子晶体带隙的确定性已不能满足工程实际需求,所以探究带隙可调控的声子晶体便成了我们需要完成的任务。磁流变液是一类性质可控的智能材料,被认为是最具发展潜力的智能材料之一。当没有外加磁场时,磁流变液以液态存在,而施加磁场以后,磁流变液迅速变成类固态,且这个转变是可逆的。这种现象反映在材料参数上则是磁流变液模量和粘度的改变。基于以上论述,本文提出了一类将磁流变液作为组成材料的声子晶体。由于磁流变液的模量可以由磁场来调控,这样利用磁流变液作为媒介就可以通过磁场来调节声子晶体的带隙。为了获得声子晶体在不同磁场下的带隙,我们首先用实验的方法测得了磁流变液随磁场变化的剪切储能模量和耗能模量图。其次,使用磁流变液构造了完美周期声子晶体模型和带有缺陷的声子晶体模型,实验中使用LMS仪器测得了其在不同磁通密度下的振动传输图谱,同时运用COMSOL仿真软件对实验的声子晶体加以建模并计算了带隙。最后,将实验得到的带隙范围和理论结果进行了对比,分析了产生误差的原因,并总结了磁场改变对带隙范围的影响规律。主要结论有:磁流变液的剪切储能模量和耗能模量随着磁通密度的增加而逐渐变大,直至磁流变液达到磁饱和状态;随着磁通密度的增大,磁流变液调控的一维声子晶体,二维声子晶体板的带隙出现了带隙所在频率变大,带隙宽度变宽的现象;以完美周期结构的铝/水声子晶体为比较对象,随着含有周期缺陷的数目的增加,以磁流变液作为缺陷的一维声子晶体梁出现了阻碍声子晶体中波的传播的现象;对于含有三个周期缺陷的声子晶体梁,随着磁通密度的增大,带隙所在频率变大,带隙宽度变宽,这和磁流变液调控完美周期声子晶体的带隙的规律有较好的一致性。