论文部分内容阅读
低空风切变通常出现在高度六百米以下,利用机载气象雷达对低空风切变进行检测时,此时航空器距离地面较近,因此气象雷达接收的回波信号中包含大量的地杂波信号,导致低空风切变无法被直接检测,为了在杂波背景下完成低空风切变检测,首先要对地杂波进行抑制。机载气象雷达在实际应用中,当存在阵元幅相误差时,导致杂波自由度增大,杂波在空时二维平面上散开,占据更大的二维空间,使得杂波谱变得更加复杂,以至于影响杂波抑制效果,进而导致低空风切变检测结果不准确。基于此,本论文以幅相误差为背景,对低空风切变检测方法进行了研究。首先,论文研究了幅相误差下机载气象雷达地杂波和低空风切变的回波数据模型,根据回波数据模型,对存在幅相误差的机载气象雷达回波信号进行了仿真,并对机载气象雷达地杂波的距离依赖性进行了推导,最后仿真了无误差和存在不同误差情况下的低空风切变和地杂波的空时二维谱,并进行了分析,为接下来的低空风切变检测奠定了基础。其次,针对存在幅相误差时,导致低空风切变检测不准确的问题,提出了一种基于组合空时主通道-局域联合空时自适应处理的低空风切检测方法。该方法首先依据雷达回波数据,对杂波存在的距离依赖性进行矫正;然后根据算法原理构造降维变换自适应处理器;最后利用求得的最优权矢量对雷达回波数据进行自适应滤波,完成幅相误差情况下低空风切变风速估计,从而实现低空风切变检测。仿真结果表明,该方法能够在幅相误差的情况下,很好的实现低空风切变检测。最后,针对CMCAP-JDL方法复杂度高计算量大的问题,提出一种计算量较小的改进辅助通道低空风切变检测方法。该方法首先采用幅相误差下基于修正导向矢量的杂波距离依赖性矫正方法;然后对待测距离单元杂波能量在波束-多普勒域的分布进行分析,根据杂波能量的分布特征选取辅助通道,来构建自适应降维处理器;最后利用求解的自适应降维处理器的最优权矢量实现对雷达回波数据的自适应滤波,完成幅相误差情况下低空风切变风速的准确估计,从而实现风切变检测。仿真结果表明,该方法在存在幅相误差时,能较好的实现低空风切变检测,同时进一步降低了运算量和算法复杂度。