论文部分内容阅读
针对高地震烈度、软土强度等影响预应力混凝土管桩(PHC)抗震性能的技术难题,展开结构性能试验、振动台试验、现场试验、理论分析及仿真模拟硏究,在桩身弯矩变化规律、桩土变形机理、抗震稳定性与变形控制方法、压弯破坏特性与质量检测等方面取得了突破。为预应力混凝土管桩(PHC)抗震性能的经济合理设计、施工提供了科学依据,为在高地震烈度区(场地类别为Ⅲ、Ⅳ类)预应力混凝土管桩(PHC)基础的安全使用提供了有力保障。本文主要:1.证明了在水平力荷载作用正常使用状态下预应力混凝土管桩(PHC)的破坏形态是压弯破坏,而不是剪切破坏,预应力混凝土管桩(PHC)的抗剪破坏滞后于弯曲破坏。2.确定了在各工况中预应力混凝土管桩(PHC)桩身弯矩最大值的产生位置约为距离桩顶5~6倍的桩径,反推原型(PHC500-AB100)发现,在El-centro地震波作用下,桩身在El-0.2g波时尚未发生危险截面的破坏,但是到El-0.3g、El-0.4g时桩身最大弯矩值都超过了规范中规定的极限弯矩值,该危险截面直接决定了桩身是否处于正常工作状态,此处是预应力混凝土管桩在抗震设计时的危险截面。3.建立并验证了预应力混凝土管桩(PHC)时程分析的数值模型,仿真计算表明最大弯矩值出现在5倍的桩径处,已造成预应力混凝土管桩(PHC)的开裂,其值已经接近或超过预应力混凝土管桩(PHC)的极限弯矩值。4.在高地震烈度软土地基中软弱夹层的存在会增大地表位移,使桩土相对位移增加;管桩在软弱土体中的运动表现为剪切型特性,土体越软,桩体的水平相对位移越大。5.为了保证预应力混凝土管桩(PHC)在高地震烈度(场地类别为Ⅲ、Ⅳ类)的安全与稳定,首次提出了竖向承载力设计抗弯强度校核的设计原则;硏究发现通过抗弯强度校核的管桩基础抗震设计,可以排除地震风险隐患,这个原则推广应用后大大提高建筑物的安全性。