论文部分内容阅读
光盘作为人们日常生活离不开的一种存储介质,其存储容量的大小直接关系到人们数据存储的能力的大小。本文首先介绍了近代光盘从CD到目前存储容量能达到单面25GB的BD的发展历程。虽然光存储技术从问世到现在,光盘的容量得到了很大的提高,但是这些都是属于远场光存储技术,其对光盘容量的进一步提高是非常有限的。而近场光存储技术所作为一种能够突破衍射极限,可能带来光盘容量无限的提高的一种技术日益为广大科研工作者所关注,本文第一章节第二部分简要介绍了近场光存储技术的发展,在近场光存储技术中,掩膜超分辨近场光存储技术是大家所研究关注的热点,而在掩膜超分辨近场光存储技术当中,掩膜材料起着至关重要的作用,所以本论文在重点介绍了掩膜超分辨光存储技术后,提出了本论文的主要研究内容:Si掺杂Ag基纳米复合薄膜的超分辨读出性能研究。
探索了磁控溅射共溅工艺条件对超分辨薄膜读出信号的影响,在分别单独改变Ag的溅射功率、Si的溅射功率以及薄膜厚度三个工艺条件的基础上,摸索出了Si掺杂Ag基复合薄膜的最佳工艺制备条件即:当Ag的溅射功率为55W,Si的溅射功率为95W,薄膜厚度为39nm时,超分辨光盘的读出信号载噪比最佳为28dB。在得出了最佳的超分辨薄膜制备工艺条件后,又对超分辨薄膜的环境稳定性和超分辨光盘的读出稳定性进行了测试。将制备好的超分辨光盘在空气中放置一个月以后再测试其读出信号,发现读出信号载噪比下降幅度小于10%,说明超分辨薄膜具有良好的环境稳定性。将最佳工艺条件下制备的超分辨光盘循环读出10万次后,发现超分辨光盘的读出信号基本上没有下降,说明超分辨光盘具有很好的读出稳定性。
对最佳工艺条件下制备的超分辨纳米复合薄膜进行了一系列的表征和测试。首先通过XPS和EDS分析出了最佳工艺条件下制备的超分辨复合薄膜中Si和Ag的原子组分比为14.5∶84.5,从XPS的特征谱图上还可以看出Si和Ag之间形成了一定的非化学计量化合物。其次通过AFM、SEM、TEM观察了薄膜的微观形貌,从AFM的图像结果来看,最佳工艺条件下制备出的超分辨薄膜表面非常的平整和致密,表面平均粗糙度Ra为1.17nm。从SEM的图像上,可以看出Si均匀的掺杂在了Ag薄膜当中,由于共溅过程当中Ag的溅射速率要远远大于Si的溅射速率,所以从SEM图像中还观察到了一些在溅射过程当中没有来得及和Si原子形成化合物的Ag原子的析出。从TEM图像中可以看出,Si和Ag在薄膜中是以多晶非化学计量化合物的形态存在的,而且通过TEM上附带的能谱分析仪分析,发现Si和Ag在薄膜中的混合是原子级别的混合,这从另一方面印证了Si和Ag之间形成一定非化学计量化合物的可能。通过椭圆偏振仪测试了最佳条件下制备的超分辨薄膜的光学常数以及改变薄膜中的Ag组分对超分辨薄膜的光学常数的影响。通过紫外可见光谱仪测试了Ag的溅射功率对超分辨薄膜吸收光谱的影响。最后,通过分别测试单层的Si和单层的Ag薄膜作为超分辨掩膜层的读出信号,从该实验的结果推断该超分辨复合薄膜的读出机理主要是由Ag薄膜的超分辨读出机理起作用,在Ag薄膜的超分辨读出机理的基础上,结合前面的一些薄膜表征结果,合理的解释了Si掺杂Ag基超分辨复合薄膜的超分辨读出机理。