组蛋白H3K9甲基化修饰调控玉米果穗不同部位种子活力差异机理的初步研究

来源 :山东农业大学 | 被引量 : 0次 | 上传用户:wind1120
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
种子活力是衡量种子播种质量的重要指标,高活力的种子抗逆性强,苗强苗壮,产量潜力高,而低活力的种子在逆境条件下出苗不整齐甚至不出苗,对产量影响大。因此,揭示种子活力差异的机理在指导高活力种子生产加工以及提高作物产量方面具有重要的理论指导意义和潜在的应用价值。通过前期研究发现,玉米果穗不同部位种子活力存在差异,表现为中部种子活力最高,上部种子活力最低。通过RNA-seq分析,发现与上部种子相比,中部种子能够更快地对吸胀做出反应,启动基因的转录。通过对吸胀24中部种子和上部种子差异表达基因GO富集分析发现了7个组蛋白甲基转移酶基因,其中有5个是H3K9甲基转移酶基因,暗示组蛋白甲基化在调控玉米果穗不同部位种子活力差异方面发挥了重要的作用。组蛋白H3K9甲基化作为基因转录沉默的抑制标记,在基因沉默和异染色质形成的过程中发挥着重要的作用。本文利用Western Blot、ChIP-seq等技术,对组蛋白H3K9甲基化与种子活力之间的关系进行了进一步探究。主要研究结果如下:
  1.通过对吸胀0h和24h的上部和中部郑单958种子进行Western Blot分析发现,在吸胀0h时上部种子H3K9me2水平与中部种子基本一致,而在吸胀24时,上部种子H3K9me2水平明显高于中部种子。
  2.通过对吸胀0h和24h的上部和中部郑单958种子进行qRT-PCR分析发现,在吸胀0h时,中部种子组蛋白甲基转移酶基因GRMZM2G165011表达量明显低于上部种子,而吸胀24h后,上部种子和中部种子组蛋白甲基转移酶基因GRMZM2G165011虽然均有升高,但中部种子表达量依然明显低于上部种子。
  3.对组蛋白甲基转移酶基因GRMZM2G165011的低表达Mu突变体研究发现,与吸胀24h的野生型种子相比,吸胀24h的Mu突变体种子组蛋白H3K9me2水平明显下降,蛋白甲基转移酶基因GRMZM2G165011的表达量明显下调,Mu突变体种子活力明显升高,说明H3K9me2水平与种子活力密切相关。
  4.通过Western Blot分析发现,郑单958吸胀24h的上部种子组蛋白H3K9me3水平明显高于中部种子,通过ChIP-seq分析发现,吸胀24h上部和中部种子有29597个共有的差异基因发生了H3K9me3修饰,其中吸胀24h后的上部种子有7052个特有的差异基因发生了H3K9me3修饰,中部种子有4030个特有的差异基因发生了H3K9me3修饰。上部种子中找到了6个与DNA损伤修复过程相关的差异基因发生了H3K9me3,中部种子中与DNA损伤修复过程相关的基因没有检测到H3K9me3。
其他文献
近年来,全球太阳辐射不断下降已经成为限制作物生产的重要因素,弱光成为影响夏玉米生长发育和产量形成的重要非生物逆境之一。本研究于2015-2017年在山东农业大学试验农场(36°09′N,117°09′E)和作物生物学国家重点实验室进行。选用夏玉米品种郑单958(ZD958)和登海605(DH605)为试验材料,设置5个试验处理,即花粒期遮阴(开花-收获,S1)、穗期遮阴(拔节-开花,S2)、全生育
学位
2015-2017年,本试验在山东省泰安市岱岳区大汶口镇(36°11′N,117°06′E,海拔178m)和作物生物学国家重点实验室进行。以玉米杂交种郑单958和小麦品种泰农18为试验材料,设有4个处理,分别为:仿照当地农户种植管理方式(T1);在T1的基础上,增加种植密度,适时晚收夏玉米,减少施氮量,提高磷钾肥比例,改一次施氮为分次施氮(T2);进一步增加种植密度和施肥量,探索作物高产潜力(T3
学位
甘薯是典型的喜钾作物,钾肥在调控甘薯生长发育方面有重要的作用。现有研究表明,适量增施钾肥可以提高单薯重和单株结薯数,显著增加块根产量。对于钾肥促进甘薯块根形成,提高单株结薯数的研究尚少。为探明增施钾肥促进甘薯块根形成的生理机制,本试验以结薯数差异显著的食用型甘薯品种红香蕉(HXJ)和北京553(BJ553)为供试材料,设置4个钾肥(K2O)施用量,分别为0g·m-2(K0)、12g·m-2(K12
学位
棉花是全球最重要的经济作物之一,棉纤维是纺织工业最重要的天然原料。棉纤维突变体是研究棉纤维分化发育的分子机理及遗传的优良材料。LiSd极短纤维突变体是山东棉花研究中心在转Bt.Cry1A基因育种的(20R37×5A41)F2代群体中发现的1个新的自然突变体,该突变体叶片和短绒表现正常,但是纤维极短(6-7mm),经过连续多代自交发现,其纤维表型遗传稳定。本研究以LiSd为材料,对其开展了遗传、等位
学位
光合作用是指绿色植物吸收光能,将CO2和水转化成有机物,贮存能量并释放O2的生化过程,是植物碳同化和生物量积累的重要途径。光合作用根据碳同化途径不同主要分为C3、C4和景天酸代谢(CAM)三种类型,其中,C4植物具有CO2同化速率高,光呼吸弱等优点,在高温、干旱等逆境条件下,其生物产量显著高于C3植物。  在C4植物,如玉米中,光合作用需要通过花环结构的两种细胞:叶肉细胞(MC)和维管束鞘细胞(B
学位
棉花是一种重要的经济作物和油料作物。体细胞胚胎发生过程是现代生物技术应用于遗传育种的基础,是对棉花品种进行遗传转化改良的重要技术环节,又是生命研究的一个重要模型。  体细胞胚胎发生是体细胞向胚胎发生途径转变的发育重建过程,是植物发育过程中类似合子胚发育的独特现象,而且体细胞胚胎发生过程可以在离体条件下人为控制,是最完全的细胞全能性表达的一种方式,是细胞全能性的有力证据和经典示例。  生长素诱导体细
学位
国产沉香为瑞香科(Thymelaeaceae)沉香属(Aquilaria)植物白木香(Aquilaria sinensis)含有树脂的木材,在传统中药中被归为行气药,具有行气止痛之效(陈宏降等,2011)。沉香的主要活性成分有两类,色酮类化合物及倍半萜。其中色酮类化合物是沉香的最重要的特征成分,且具有重要药用价值,如抗过敏和神经保护等。然而,由于色酮类化合物在自然界中的发现得较少,且具有结构的独特
学位
玉米在粮食生产、饲料供给、能源开发中起着重要的作用,也是我国的第一大粮食作物。随着玉米需求量的增大、种植面积不断增大,同时农村劳动力稀缺,使得农业生产的全程机械化成为发展的必然,而当前机械化收获是玉米全程机械化的薄弱环节,面对的首要问题是玉米生理成熟后期籽粒脱水速率慢,籽粒含水量高,为了解决这一问题,需要育种家们培育适宜机械化收获(籽粒脱水快)的玉米新品种。国内外学者通过大量田间调查得出:玉米苞叶
学位
氮素是农作物生长必需的营养元素,对提高作物产量具有重要作用,但因不合理施用氮肥造成了氮素大量损失、环境污染加重、氮肥利用效率降低等突出问题。土壤微生物在地球上扮演着重要的角色,他们不但驱动着地球化学的进程而且对维持地球上作物的物种丰富度与生产力有着很大的贡献。本研究在长期肥料定位试验平台上监测了不同施肥处理对夏玉米田土壤微生物多样性及群落结构和NH3、N2O排放规律及其损失量的影响,以探讨减少黄淮
学位
小麦是我国主要的粮食作物之一。随着人们生活水平的提高,对小麦品质的要求也越来越高,改良小麦品质成为小麦育种的重要目标。色泽是小麦面粉以及面片质量的重要体现之一,而面条作为中国北方的主食之一,其弹性、拉伸性、口感等品质的好坏直接影响人们的生活质量。因此,研究小麦色泽及面条品质相关性状的遗传机制对小麦品质改良育种具有重要的意义。  本研究以205份中国冬麦区小麦品种(系)为材料,利用90k小麦SNP基
学位