钢模块波纹板墙体抗侧性能及设计方法研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:baimn1990
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,装配式建筑由于具有绿色环保、能耗低、施工效率高、劳动力需求少等优点,受到国家大力推广,而钢结构模块建筑作为装配化更高的新兴建筑形式,更是迎来了发展的上升期。然而,目前对钢模块结构的研究主要集中在模块单元间节点的力学性能及简化,对于将波纹板作为围护结构的模块建筑,结构设计时如何考虑波纹板刚度贡献且对其采用合理的建模分析方法的研究较少。因此,有必要对模块单元的波纹板刚度贡献进行研究,提出一种满足分析精度要求并便于结构设计的等效简化模型。
  本文首先对模块结构波纹板单面墙体进行了受力以及变形分析,基于能量理论推导得到水平均布荷载作用下波纹板单面墙体的抗侧刚度,然后通过有限元模拟对计算公式的准确性进行了验证。在上述计算公式的基础上,提出了波纹板等效弹簧简化模型,并与相关文献的试验值对比验证了波纹板等效前后建模方式的正确性和简化模型的合理性,为之后通过简化模型进行参数化分析奠定了基础。
  然后,分别对波纹板单面墙体精细化模型和等效模型的抗侧刚度进行了198个模型的参数化分析。当跨度明显增大时,模块房屋天花板梁加载端会产生局部变形效应,使波纹板的抗侧刚度不能得到充分发挥。对比波纹板精细化模型和等效模型,应力分布情况基本相同且初始抗侧刚度误差较小,由此得到等效弹簧简化方式对于不同跨度的适用性。同理,分别取波纹板厚度、波峰高度和波长为变量进行了参数化分析,验证等效简化弹簧模型具有合理性和较强的适用性。
  最后,分别建立波纹板刚度考虑前后的Midas分析模型,对比了它们在相同荷载作用下的整体结构响应。结果发现:当不考虑波纹板刚度贡献时,框架部分主要承担抗侧力,为整体结构的薄弱部位;通过等效简化模型考虑波纹板刚度贡献后,结构的周期、位移及内力均有不同程度的减小,内力分布也更加均匀,表明波纹板在结构响应中发挥了明显的作用,进一步说明实际工程中波纹板的刚度贡献不可忽略,工程结构设计可以采用波纹板等效弹簧简化模型进行计算。
其他文献
铸钢节点减少了焊缝热影响区在节点域范围内的影响,在梁柱节点抗震中具有良好的应用前景。在大震作用下梁柱节点会发生较大的塑性变形,在经历极少次的循环作用就发生超低周疲劳断裂破坏。在冬季或者温度较低的环境下,钢材延性性能会进一步劣化,在地震作用下钢结构或者钢构件更容易发生断裂破坏,因此有必要对铸钢材料的超低周疲劳断裂性能进行研究。本文从钢材的微观断裂机制出发,研究了G20Mn5QT铸钢材料超低周疲劳断裂
学位
方钢管柱-H型钢梁框架体系因其力学性能优良、施工简单以及几何规则等优点被越来越广泛地应用到高层以及超高层建筑中。外环板节点作为方钢管柱-H型钢梁框架体系中三种最常见的节点形式之一,因其独特的优势,占据了一席之地。目前,针对外环板节点剪切破坏下的剪切性能以及两侧钢梁不等高的节点形式研究较少。本文从试验、有限元模拟和理论分析三个角度对外环板节点进行了研究。  在查阅国内外大量研究文献的基础上,本文总结
"一带一路"倡议推动着沿线国家和地区重大基础设施工程的建设,然而这些地区又多分布着盆地和山脉地形,且近几年沿线地区地震频发,其中多为危害严重的浅源地震,这种地质环境对工程建设极为不利。然而,在以往关于局部不规则地形的地震动研究中,震源均被假定为平面波。这种假定在震源距较大时,是相对合理的,但对于浅源地震来说,震源距通常较小,入射波的曲率影响不能忽略,此时应采用球面波来模拟震源。但是目前关于球面波入
随着我国公路交通事业的快速发展,大跨径公路桥梁迎来建设的热潮。悬索桥由于自重较小、跨越能力出众且造型美观,因此在大跨径桥型中被广泛采用。在悬索桥中,采用耐候钢-砼组合加劲梁可以更好地利用耐候钢和混凝土的材料特性,提升耐久性的同时减少工程造价。加劲梁和主缆作为悬索桥的主要受力构件,在服役过程中时刻承受着环境侵蚀的作用,承载能力因此而下降,威胁桥梁的运营安全。因此,评估桥梁在运营期内的承载能力下降情况
学位
在基于性能的桥梁抗震设计方法中,桩基础通常作为能力保护构件抵抗正常使用状态和承载力极限状态下的弯矩、剪力和轴力,以及在地震作用下由墩柱传来的最大弯矩、剪力和轴力。当承受由墩柱传来的最大弯矩时,群桩基础中的最外排桩可能会受到很大的拉力。基于此,本文以天津市域轨道交通Z2线桥梁桩基础为工程背景,对拉力和弯矩共同作用下桩基受力特性和破坏机理进行了研究。本文主要的研究内容与成果如下:  (1)分析了拉力和
学位
空间网格结构已经广泛应用于机场、火车站、体育馆等大型公共建筑中,随着使用年限的增加,可能由于老化、受灾、使用功能改变等原因导致结构承载能力不足,因此对在役空间结构加固研究亟待完善。焊接空心球节点是空间结构中应用最广泛的节点之一,目前对焊接空心球节点的加固方法研究主要集中于完全卸载后加固,但工程实际中普遍存在负载加固问题,因此需要对负载工况下焊接空心球节点加固方法进行研究,以满足实际工程的需要。  
大量的工程实例显示,钢筋混凝土结构中的钢筋锈蚀问题是引起结构失效的主要原因之一。特别是在极地低温环境下,混凝土长期受冻引起内部裂隙发展,各类腐蚀性物质更易侵入混凝土中,进而加快了钢筋锈蚀的产生。纤维增强复合(FRP)材料具备耐腐蚀、高强、轻质、电磁绝缘等诸多优势,用FRP筋替代钢筋的FRP筋混凝土结构体系为解决低温工程结构难题提供了新的方向。而现阶段国内外对于低温环境下FRP筋性能的研究较为匮乏,
学位
梁柱连接节点作为钢框架结构的传力枢纽以及各种构件的约束条件,对框架结构的承载力有着十分显著的影响。传统的梁柱连接节点力学性能研究多侧重于平面梁柱连接节点,而实际工程中,梁柱连接节点大多数是承受双向荷载作用空间节点,平面节点的受力模式和破坏方式往往不能完全反映结构在实际使用中的双向受力状态。本文以方钢管柱和圆钢管柱-H形钢梁梁柱连接空间铸钢节点作为研究对象,采用了理论分析方法和有限元数值模拟方法,对
学位
天然气是21世纪的高效清洁能源,我国天然气供气比例逐年上升,城市天然气管道管网数量增长,导致了燃气安全事故频发。目前我国正在大力推行综合管廊基础设施建设,鼓励燃气入廊。这样可以减少燃气安全事故数量,但是在封闭燃气舱室中一旦发生燃气泄漏爆炸,造成的后果可能会更严重。  本文对综合管廊内天然气爆炸荷载特性进行研究,并对综合管廊发生天然气泄漏爆炸的后果进行了定量风险评估。主要研究内容及成果如下:  (1
学位
地铁由于具有安全、高效等优点而在城市中得到了大力的发展,是解决交通资源紧张问题的重要手段之一。盾构法是目前地铁在城市中施工的主要工法。由于周围地层环境的复杂以及施工工艺的缺陷,盾构施工难免会对周围地层产生扰动,使土体经历一系列复杂的应力路径,进而改变土的力学特性。此外,当隧道施工完成后进入运营期间,隧道及周围土体还会承受不同的动力荷载。因此,研究隧道周围土体在经过盾构施工应力路径后动力特性如何变化
学位