For any nilpotent Lie group we provide a description of the image of its C*-algebra through its operator-valued Fourier transform and we show that this C*-a
We introduced the concept of strong property $mathbb{B}$ with a constant for Banach algebras and,by applying certain analysis on the Fourier algebra of a u
In all years,I have mathematical dreams on completely positive linear maps,concerning tensor products of complex matrices.Suddenly,I wandered into the quant
Let L be a type II1 factor with separable predual and τ a normal faithful tracial state of L.We first show that the set of subfactors of L with property Γ
If we recall that the spectrum of the Fourier algebra is nothing but the underlying group itself(as a topological space),then it is natural to be interested
Given a unital ring R and a length function on R-modules,we introduce an invariant,called mean length,for modules of the group ring RΓ for any sofic group