【摘 要】
:
Proper organ development requires the precise regulation of both the total number of cells (cell proliferation) and the types of cells (cell differentiation).During cell proliferation, Cdt1 mediated l
【机 构】
:
Division of Life Science The Hong Kong University of Science and Technology Hong Kong, China
论文部分内容阅读
Proper organ development requires the precise regulation of both the total number of cells (cell proliferation) and the types of cells (cell differentiation).During cell proliferation, Cdt1 mediated loading of DNA helicase (Mcm2-7) to replication origins is required for DNA replication.And Hox gene activation is necessary for embryonic cell differentiation.It has been shown that these two processes are linked through the cell cycle-regulator Geminin and the homeodomain-containing transcription factors Hox.To understand the molecular mechanism involved, we determined the solution structures of Geminin-Hox, Cdtl-Mcm6 complexes and DNA G-quadruplex structure by nuclear magnetic resonance (NMR) spectroscopy and conducted biochemical study to delineate the structural basis and posttranslational modifications of this mutual regulation.In addition, we found that histone H4-K20 methyltransferase SET8 is a new cell-cycle regulator and plays an important role in the developmental program of metazoans.(These works are supported by RGC 663911,NPC-AOE).
其他文献
妊娠期高血压疾病hypertensive disorders complicating pregnancy-HDCP·产科最常见的并发症之一·母儿危害大-危重症·研究的热点高危因素·年龄≥40y·高血压、DM、慢性肾炎·PE病史或PE家族史·抗磷脂抗体阳性·BMI≥35kg/m2·多胎妊娠-《妇产科学》第8版
纳米生物医学是一个融合纳米技术与生物医学的前沿交叉学科领域,在生物技术、医药卫生和健康工程等方面发挥着日益重要的作用。纳米材料具有独特的声、光、电、热、磁和力学性能,据此发展起来的纳米探针、生物传感、活体示踪技术和纳米载药系统为肿瘤的早期诊断和治疗提供了新的思路和方法。我们研究用于纳米尺度及分子水平上的多功能纳米生物材料和诊疗一体化纳米颗粒,开发细胞-活体成像、影像诊断和靶向治疗一体化的原理、方法
纳米技术经过半个多世纪的发展,已经成为一门集前沿性、交叉性和多学科特征的新兴研究领域,其理论基础、研究对象涉及物理学、化学、材料学、机械学、微电子学、生物学和医学等多个不同的学科,引伸出了一系列新的科技领域,同时纳米技术也将促使神经外科产生质的飞跃.1.纳米技术在创伤性脑水肿基础研究中的应用2.纳米技术在脑肿瘤的分子生物学研究和治疗中的应用3.纳米技术在脑血管疾病的诊断治疗中的应用
作为一种针对真性难治性高血压的微创介入治疗新技术,经导管肾去交感神经术(Trans-catheter renal sympathetic denervation,TRSD)是利用特殊导管经肾动脉内膜消融沿血管外膜走行的支配肾脏的交感神经,阻滞其传入与传出纤维的神经传导,抑制相关的神经内分泌活动,达到有效降低血压的目的。近年来,澳大利亚及欧洲多项临床研究表明:该项技术能够有效地持续降低难治性高血压患
近年来,纳米医学的迅猛发展成功推动了新一轮医学技术变革与医学产业化浪潮的形成。多种新型纳米生物材料及技术被逐渐应用于各医学学科的科研及临床实践工作中,大量先进成果得以涌现。具体到泌尿外科,纳米生物材料及技术已在微创泌尿外科高性能专用器械研发、泌尿生殖系统疾病病理成像及影像精细化诊断、特异性肿瘤生化标记物检测、前列腺癌靶向治疗及监测、膀胱肿瘤光动力学治疗新型光敏剂制备、泌尿生殖系统组织工程修复与重建
纳米材料具有自身潜在的特异性的属性,比如颗粒大小,原子组成,磁性和电子特异性属性等等,所有这些特点使得纳米粒子在疾病治疗,尤其是肿瘤靶向治疗中具有独特的优越性。通过纳米粒子进行物理、化学以及生物活性方面的修饰,来促进药物的溶解性,改善药物的吸收,提高药物传输的靶向性等等,最终提高药物的有效性。其中,利用纳米粒子介导和控制抗癌药物的传递和释放进行肿瘤治疗,已经成为目前纳米载体药物研究的热点。
纳米技术应用于干细胞的相关研究是指将干细胞研究和纳米技术这两个前沿学科结合起来,应用纳米技术为干细胞的研究和运用解决技术性的瓶颈问题。包括基于纳米技术的干细胞分离纯化、干细胞标记和示踪、干细胞微环境培养、干细胞转染、干细胞组织工程技术应用等技术难题。纳米技术为干细胞的研究和发展提供了新的技术前提和契机。干细胞纳米技术是两者结合形成的一个新的技术和新兴的研究方向。
目前细菌、结核杆菌的耐药现状,我国抗耐药抗生素的研发状况,以及华北制药抗耐药抗生素的研发生产状况和牵头承担的20 14年新增科技部重大新药创制专项课题"创新型抗耐药抗生素的研制以及重大品种的质量提升"的情况简介。
A range of technological advances including areas of electronic circuits and power electronics, solid state physics, materials and biocompatible packaging, allow for the expansion of diagnostic and th
Worldwide, basic research in the life sciences traditionally has been supported by and anchored to one or more of the following: governmental subvention or hosting;academic or other institutional faci