InP基高电子迁移率晶体管(HEMT)的模拟与优化

来源 :第十七届全国化合物半导体材料微波器件和光电器件学术会议 | 被引量 : 0次 | 上传用户:qinxueqiQQ
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  InP基高电子迁移率晶体管(HEMT),以其优良的特性成为微波/毫米波高频段低噪声有源器件的主要选择之一,本文根据异质结构参数设计优化方法对InP基HEMT器件进行模拟并优化,并结合国内现有化合物半导体材料生长和器件工艺水平,得到了一组优化的InP基HEMT异质结构设计参数。模拟结果显示,器件的跨导大于800mS/mm,最大饱和电流350mA/mm,沟道电流截止电压-0.6V,电流增益截止频率196GHz,器件的DC与RF特性充分显示了器件在微波/毫米波高频段应用上的巨大潜力。
其他文献
为了进一步理解自开关器件的基本工作原理和电学特性,本文对自开关器件进行了器件和电学特性的模拟。通过对器件施加不同偏压,得到了沟道内部电势分布图,分析了器件的整流特性,从电势的角度解释了器件的工作原理。同时分析了不同器件表面参数对器件电流特性的影响:沟道宽度越大,开启电压越大,特定电压下的电流也越大:水平沟槽宽度越大,反向漏电流越大;而沟道的长宽比如果过小的话,会出现短沟道效应,影响器件的整流性能。
采用激光分子束外延技术,相同的实验条件下分别在Si(111)、sapphire (0006)和MgO(111)衬底上外延出极性纤锌矿结构AlN薄膜。XRDθ-2θ,Φ扫描和ω扫描结果显示(0002)AlN在六方的sapphire (0006)和立方MgO (111)衬底上为均外延生长,其关系为(0002)[11-20]AIN//(111)[0-11]Mgo、(0002)[11-20]AIN//(0
采用基于密度泛函理论的第一性原理全势线性缀加平面波法,研究了C:Si共掺杂纤锌矿AlN的32原子超胞体系的能带结构、电子态密度等性质,分析了C:Si共掺实现p型掺杂的机理。在AlN的掺杂体系中,当C、Si的浓度相等时,C-Si复合物形成,施主和受主杂质会相互补偿,导电性较弱;当提高C的掺杂浓度时,可能有C2-Si,C3-Si等复合物的形成,这些复合物的形成通常能够提高受主杂质的固溶度,降低受主激活
GaSb材料在制作长波长光纤通信器件、红外探测器和热光伏器件方面表现出了极大的潜力和良好的发展前景。本文报道了大直径(最大直径5英寸)GaSb单晶液封直拉法(LEc)生长结果,所生长的单晶材料具有低位错密度(位错腐蚀坑密度低于3000cm-2)和优良的电学性能,获得了良好的器件使用效果。
采用固态分子束外延技术在半绝缘GaAs(001)衬底上生长了AlSb/InAsSb结构的高电子迁移率晶体管(HEMTs)。生长中采用了新型挡板开关顺序,实验发现,室温下非有意掺杂的HEMT结构二维电子气迁移率可以达到16170 cm2/Vs,实验研究了生长温度对二维电子气迁移率的影响。实验发现,随着温度的升高,电子迁移率得到了极大的提高。
重P型掺杂GaAsSb广泛用于InP HBT基区材料,重掺杂影响GaAsSb材料带隙和费米能级等重要参数,这些参数对设计高性能HBT起着关键作用。光荧光作为重要手段广泛用于研究重掺杂Ⅲ-Ⅴ族外延材料。本文通过光荧光方法研究了重掺杂GaAsSb费米能级与Sb组分的关系,由于费米能级与空穴有效质量mh和空穴态密度nh存在函数关系,通过荧光测量并计算了空穴有效质量mh和空穴态密度nh,研究结果表明,mh
本文报告采用金属有机化学气相沉积法(MOCVD)制备InAs/InGaAsP/InP量子点激光器的研究。通过生长条件的优化获得了高质量量子点材料。进一步,通过引入两温盖层生长技术成功地实现了对量子点材料尺寸分布的控制,使量子点芯片的光致荧光(PL)均匀性和可重复性均得到较大改善。所制作的脊型波导量子点激光器实现室温连续激射,平均每层的阈值电流密度低至460A/cm2。
利用AFM(原子力显微镜)、CV以及霍尔测试手段,对在GaAs衬底上分子束外延(MBE)制备的两种不同结构的InAs/AlSb材料进行测试,研究了δ掺杂对InAs沟道中电子迁移率与二维电子气的影响。在对InAs/AlSb材料的能带结构分析研究的基础上,可以通过在InAs沟道上下两层的势垒中分别添加N型δ掺杂来提高沟道中二维电子气浓度。测试结果表明,在只有上层δ掺杂的InAs沟道中电子迁移率与二维电
采用固态分子束外延技术在半绝缘GaAs(001)衬底上生长了AlSb/InAs高电子迁移率晶体管结构,研究了室温下InAs沟道厚度对二维电子气迁移率的影响。研究发现,一个较厚的沟道对提高二维电子气迁移率有很大的作用。研制的AlSb/InAs HEMT室温下迁移率最高达到了23050cm2/Vs,二维电子气浓度为2.8×l012/cm2。
利用标准光刻和感应耦合等离子体(ICP)刻蚀技术制作了直接连接一个输出波导的微柱激光器,并且用BCB进行了包裹。对于直径为15μm,输出波导宽度为2μm的微柱形激光器成功实现了室温的连续注入激射。并且观察到了很好的单模输出特性,当注入电流分别为50和70mA时,波长从1563.5nm变到1573.4nm,边模抑制比分别为27dB和35dB。