A Multi-scale Dehazing Network with Transmission Range Stretching

来源 :第六届中国计算机学会大数据学术会议 | 被引量 : 0次 | 上传用户:qq774257837
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Image dehazing has become a significant research area in recent years.However,the traditional dehazing algorithms based on statistics priors cannot adaptive to various conditions of natural hazy images.And those algorithms based on Data-driven learning such as some dehazing networks for estimating transmission almost have the problem that the range of the estimated transmission is too narrow for those haze images where hazy density changes largely.So in this paper,we present a novel Dehazing Network to learn the relationship between the hazy image and its corresponding transmission map.It uses jump connection and the layer of Multi-scale features fusion to obtain more feature related to haze density and use both max pooling and average pooling which in turn remove some details of the transmission map and make the gained transmission map more accurate.Moreover,we also propose a linear stretching algorithm based on dark channel prior to extent the transmission range.The experimental result demonstrate that proposed algorithm achieves favorable result against existing dehazing algorithms on both synthetic images and natural images.
其他文献
网络流数据是分析人员对网络运行状况进行评判的重要依据,但网络流数据的数据量庞大、数据维度较多以及分析层次多样会给分析人员带来认知困难,因此针对网络流数据的多层次性、主机关联性以及多元时变性等特征,提出多层次关联可视分析模型.该模型针对多层次性和主机关联性特征分别设计了宏观-中观-微观的多层次分析以及关联分析,实现了由整体到局部、由局部到个体以及由点到面的可视分析.根据上述模型并结合网络流数据的多元
To settle resource scarcity problem for Chinese-Vietnamese bilingual aligned corpus in metallurgy field,a method to Chinese-Vietnamese bilingual term extraction in metallurgy field based on a pivot la
为实现相似重复记录检测,提出一种基于One-Class SVM的分类检测方法.针对数据源中相似重复记录样本稀少的特点,将相似重复记录的检测建模为单分类问题;针对单一数据源的情况,根据记录中不同属性特征的类型不同,定义了字符串型、枚举型、连续型三种属性之间的相似性度量方法,将记录对之间的相似特征向量作为One-Class SVM分类器的输入进行检测;建立了以召回率、准确率、特征数量为目标的多目标特征
With the rapid development of location-based services,there is more and more personalized demand for route planning.The existing studies on route queries on time-dependent network to find the optimal
互联网逐步融入人们日常生活的各个领域,基于URL的窃取用户信息及互联网金融账户等恶意URL开始成为了一大安全隐患,已有的传统基于黑名单的恶意URL的检测方法,不能解决海量网络流数据中恶意URL的检测问题,使用离线机器学习的检测恶意URL方式的时效性不强,不能很好地及时对恶意URL进行检测.本文采用在线学习算法训练恶意URL检测模型,充分利用了在线学习算法的模型更新效率高、以及可以利用有限的计算机资
降低能耗开销、建设绿色数据中心,已经成为目前大规模数据中心的重要需求.在绿色数据中心中,如何使数据库系统在满足性能需求的前提下尽量地节约能耗,即如何提高数据库系统的能耗有效性,是目前研究的重点.数据库系统中的能耗有效性旨在使用更少的电能来提供相同的服务,例如:处理的事务数量、响应的I/O请求数量等等.能耗有效性越高,说明数据库系统可以用更少的能耗就能够响应同样数量的操作,换句话说,可以用更少的能耗
In this paper,an intelligent inventory management system for vending machines based on image recognition has been proposed.The outside image of a vending machine goods cabinet is obtained by a camera
We study the GroupBy implementation scheme widely used in distributed systems and databases.The GroupBy operation partitions a set of out-of-order records into groups.Due to the massive data size,many
Recently,deep convolutional neural networks(CNNs)in single image super-resolution(SISR)have received excellent performance.However,most deep-learning-based methods do not make full use of low-level fe
数据中心数量与规模的不断扩大使得其能耗开销也快速上升,由于数据中心并不是持续处于高负载状态,因此研究者提出了“能耗同比性”设想,即系统的能耗可随着负载变化而动态调整.但是,如何实现服务器集群的能耗同比性还是一个未决问题.本文针对性地提出了一种基于负载预测的服务器集群能耗同比性控制方法.在一个时间窗口内采样服务器集群负载信息,然后通过时间线性序列拟合算法找出负载变化的关键点,并使用最小二乘法对关键点