Levy--Ornstein--Uhlenbeck transition semigroup as second quantized operator

来源 :International Conference on Stochastic Partial Differential | 被引量 : 0次 | 上传用户:xufei777
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Let \mu be an invariant measure for the transition semigroup $(P_t) $ of the Markov family defined by the Ornstein--Uhlenbeck ty pe equation d X= AXd t + d L on a Hilbert space E,driven by a Levy pro cess L.It is shown that for any t> 0,$P_t$ considered on $L^2 (\mu)$ is a second quantized operator on a Poisson Fock space of $\e ^{At}$.
其他文献
  A solution of a linear BSDE (Backward Stochastic Differential Equation) is a discounted martingale with a prescribed terminal value under a specific probabi
会议
  In this paper we prove that,under condition,a strong law of large numbers holds for a class of super-diffusions Xcorresponding tothe eolution equation θtυ
会议
  At the beginning we briefly recall the basic notions and results of the theory of fractional Ornstein-Uhlenbeck processes in infinite dimensional spaces and
会议