Dominant plant species shift their nitrogen uptake patterns in response to nutrient enrichment cause

来源 :第二届全国稳定同位素新技术开发与应用交流研讨会 | 被引量 : 0次 | 上传用户:veteran_eng
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Niche partitioning by time, space and chemical forms has been suggested as an important mechanism to maintain species coexistence.Climate warming is assumed to increase soil nutrient availability through enhancing mineralization of soil organic matter in a variety of terrestrial ecosystems.However, few studies have yet examined how dominant plant species contribute to species coexistence when nutrient enrichment occurs in native ecosystems.We studied a single fairy ring (5mdiameter) in a Kobresia meadow in the Tibetan Plateau.This kind of rings is caused by a basidiomycete fungus Agaricus campestris, and is evidenced by dark-green vegetation boundaries.Nutrient enrichment occurs due to enhanced decomposition of soil organic matter (SOM) in the fungus growth zone of these rings.We conducted a short-term 15N labelling experiment and found that dominant plant species shifted their N uptake patterns and preferred N form (NO3-, NH4+, and amino acid N) in response to nutrient enrichment in an N-limited alpine meadow.The legume Gueldenstaedtia diversifolia had the lowest aboveground biomass among the five plant species studied at low available N level, although it mainly utilized ammonium (the most abundant N form).The two graminoids (Eiymus nutans and Stipa aliena) demonstrated similar aboveground biomass at low and high available N levels, showing a similar pattern switching from NH4+/NO3-uptake outside the ring to glycine uptake in the annulus zone of the ring.The biomass of the forb Gentiana straminea differed significantly at low and high available N levels, but its N uptake pattern almost remained unchanged.Species therefore differed in their response to nutrient enrichment, most species showing chemical niche shifts instead of niche conservatism.This finding has important implications with regard to understanding the mechanisms responsible for species coexistence when natural nutrient enrichment is induced by climate warming in terrestrial ecosystems.
其他文献
在稻田生态系统中,水分管理和氮肥供应是影响水稻高产和高效的主要可调控因子.本文通过柱栽模拟试验,结合15N 同位素示踪技术,研究2种水分管理方式(WLI:淹水灌溉;WCI:控水灌溉)和4个供氮水平(NO:不施氮,N1: 126kg N ha-1即60%常规施氮量,N2:157.5 kgN ha-1即75%常规施氮量,N3:210 kgN ha-1即常规施氮量)对水稻产量和氮素吸收利用效率的影响.结
以自制孔雀石绿-D12为内标,建立了水产品中孔雀石绿的高效液相色谱-串联四级杆质谱联用测定方法.本方法以Phenomenex Lichrosorb5色谱柱(250mm×4.6 mm,5μm)为分离柱,乙腈-乙酸铵缓冲溶液((V/V =80∶20)为流动相,以乙腈提取样品,在电喷雾正离子选择反应检测模式下进行定性定量分析.该方法的检出限为0.5μg/kg,线性范围为10~1000ng/mL,加标回收
目前,在农业科学研究中,应用的稳定同位素主要是13C、15N、18O、和2H,其中应用最多的是15N.由于这几种元素是生物体的主要营养素,因此关于这些营养素的代谢研究也是农业科研的主要研究内容,同时由于同位素示踪方法的独特性、唯一性和不可替代性,同位素的应用几乎渗透于农业科学研究中各个领域,如动植物营养与生理、资源环境、农产品溯源、分子生物学研究、农产品溯源等.同位素的应用极大地促进了农业科研的发
建立了稳定同位素培养-气相色谱/质谱联机测定土壤氨基酸手性异构体13C富集比例的方法,从而可有效区分土壤中原有的和利用外加碳源新合成的氨基酸.培养过程中加入的13C-葡萄糖被迅速利用形成氨基酸碳骨架,因而利用质谱技术可检测到同位素的丰度变化.加入的葡萄糖直接合成氨基酸的比例可利用m/z(F+n)的相对丰度的变化来评价,而源于葡萄糖的13C同位素在氨基酸分子中的富集程度是所有同位素相对丰度变化的总和
低氘水是一种稳定同位素产品,低氘水的制备技术及应用研究近年来获得较大进展.研究发现低氘水具有活化免疫细胞、改善机体基础代谢水平、抗细胞突变和延缓衰老等功能,有利于生命体的生长和繁衍,拓展了低氘水的用途.
以乙醇-D6和苯酐为原料,在缩合剂的催化下生成邻苯二甲酸二乙酯-D10.以消耗的乙醇-D6计算,邻苯二甲酸二乙酯-D10收率为87.5%.产品结构经质谱和核磁共振波谱等表征确定,纯度99.2%,氘同位素丰度99.1atom%D,可作为食品安全领域检测用内标试剂.
Groundwater overdraft threatens the future of irrigated agriculture in the North China Plain.Because irrigated winter wheat is the dominant user of extracted groundwater, improved understanding of wat
Isotope ratio infrared spectroscopy (IRIS) provides an in situ technique for measuring δ13C in atmospheric CO2.A number of methods have been proposed for calibrating the IRIS measurements, but few stu
会议
Chemical N input is essential for high rice yields.However, low recovery efficiency of chemical fertilizer N with flooding irrigation in the anthropogenic-alluvial soil resulted in N lost from the ric
Plants can directly absorb intact amino acid molecules.However, it has not been widely accepted that amino acids can be readily adsorbed to the soil solid phase and that the adsorbed amino acids quant