INSAR在基于卫星的大坝监测中的应用

来源 :水电2013大会——中国大坝协会2013学术年会暨第三届堆石坝国际研讨会 | 被引量 : 0次 | 上传用户:zhenghaiwei
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目前,随着监管机构和公众对大坝关注越来越多,大坝管理者不得不加严对仪器仪表规格、仪表测量精度和监测时间间隔的要求.此外,多数20世纪50年代和60年代建造的大型水坝正快速接近其设计年限.在斯堪的纳维亚半岛北部,由于大坝往往建于偏远地区且受其气候条件影响,开发低成本工具来提高大坝检测效率和监测性能已成为研究热点. 传统监测大坝变形的手段一般是人工操作的水准仪.然而,近年来,随着人造卫星技术和数据处理技术的飞速进步以及地面物体卫星定位精度的不断提高,基于卫星的大坝变形监测技术成为可能.其中的一个技术方法就是INSAR(差分干涉合成孔径雷达测量技术),过去十年,该技术已经发展为可操作的成熟技术.INSAR技术通过对比在不同时间获取的两个雷达图像来观察表面变形,精度达毫米到厘米量级.目前,高分辨率卫星的空间分辨率可达1 m.在交通不便的偏远地区或当变形区域面积较大时,基准测量较复杂,此时基于卫星的监测方法尤为有效. 遥感技术用于监测大坝安全方面的例子十分有限,但最近一项挪威Svartevann大坝的试点研究(Voege,Frauenfelder,Larsen,2012年)却获得了可喜的成果.根据这项挪威大坝的试验结果,INSAR方法显然在大坝变形长期监测方面具有应用前景.为了进一步验证该方法的可行性,并准确监测大坝的垂直变形,位于瑞典Tr(a)ngslet的一座高125m的河堤大坝成为2012年试验研究的对象,利用历史数据及INSAR方法对大坝垂直变形模式进行验证.有关测量该大坝垂直位移的历史记录可一直追溯到1961年,但只利用了1993年至2000年的图像来模拟大坝的历史沉降,也就是说1988年至2003年定期监测项目中出现了无相关记录可循的空白.因此,本研究在验证大坝安全卫星监测技术有效性的同时,还将收集历史数据,以填补这些空白.卫星图像结果显示了明显的采样点变化趋势,其中遥感数据趋势与已经监测到的数据趋势的偏差除与大坝建成后只关注读取的相对位移而不关注绝对位移有关外,最可能与大坝使用年限内基准的多次变更有关.另一个影响因素就是之丽的数据是零散地读取的,且没有考虑水坝水位,但当大坝调节幅度较大时,水坝水位可能会影响位移,特别是水平位移.研究结果表明INSAR技术的精度和分辨率足够满足大坝垂直位移监测要求,且该方法是比传统监测方法在成本上更具竞争力.
其他文献
通过回顾柘溪扩机工程施工期重大安全威胁的处置,阐述经常深入现场,跟踪思考工程结构本体安全性、施工设施安全性及作业行为安全性,是及时发现安全隐患的前提;组织技术专家认真研究,因时因地制定可行的方案,是成功处置重大安全威胁的技术保障;沉着冷静、决策果断、组织高效是成功实施处置方案的必备素质.任何工程项目或重要施工设施发生安全事故,都会影响工程建设总目标的实现,因此在安全管理上,业主、监理、设计与施工单
Chaglla坝位于秘鲁,是装机容量450 MW的Chaglla水电站的一部分,Chaglla混凝土面板堆石坝高211.0 m,库容8.15亿m3,呈现出一系列特点,如材料分区;坐落于峡谷中,具有较小的形状因子(A/H2),约为1.50;以及陡峭的右坝肩,其平均倾角为70°;上述特点决定了大坝重要的设计特征.大坝设计需要有基于现场条件的严谨的解决方案,以保证大坝良好的性能.大坝材料分区考虑了山谷的
许多已建成的超高坝比较普遍出现了面板沿垂直缝挤压破坏、顶部水平弯曲裂缝和水平拉伸裂缝等结构性破坏.为了防止这些事故的产生,本文提出了超高面板堆石坝设计原则:主堆石区3B压缩模量值,应能控制水库水压力引起的面板挠度,以避免面板沿垂直缝产生挤压破坏;主堆石区3B的宽度,应能保证面板在给定堆石压缩模量的最小挠度;次堆石与主堆石压缩模量比,应能避免堆石上游面拉应变的产生,以避免面板出现水平拉伸裂缝;水库蓄
本文讨论了狭窄河谷中大型黏土心墙堆石坝的抗震设计分析和具有复合地震灾害的坝址以及根据更新的国际大坝委员会(ICOLD)关于大坝的抗震参数选取指南进行的抗震设计和性能规范.坐落于峡谷中的堆石坝,在坝址处需要考虑以下地震灾害:(i)地面震动;(ii)大坝基础断层;(iii)岩石崩塌.此外,考虑到较高的地震活动性且临近大的断层,在水库蓄水运行的前几年可能出现水库诱发地震.由于距离坝址1.5 km内存在一
本文提出了一种由法国电力公司水电工程中心开发的本构模型L&K-Enroch,此模型是一种考虑了高混凝土面板堆石坝在偏向荷载与各向同性荷载作用下碾压堆石体的不可恢复变形的弹塑性模型.介绍了一种三维大坝模型,用来验证此本构模型的可靠性以及更好的理解有时在混凝土面板堆石坝面板上观测到的裂缝的成因:此模型考虑了低谷效应,并与莱索托145 m高的Mohale坝进行了比较.同时考虑了分区,施工顺序,以及地基与
汶川地震后,我国对设计高土石坝提出了分析评价其极限抗震能力的要求.目前全面深入的评价方法,是从坝坡稳定、地震残余变形、液化安全性和防渗混凝土结构应力状态等方面,运用数值分析和动力离心模型试验的方法,综合判定高土石坝的极限抗震能力,长河坝心墙堆石坝工程首次采用了此综合评价方法.然而此类评判目前没有统一的判定标准,探求其原因,认为是数值或物模模拟方法不能十分真实模拟实际情况、分析方法细节、验证实例资料
在日本,现行抗震规范要求大坝抗震按照传统的准静力分析设计.按此规范设计的大坝,在经历地震后,没有给下游人民带来严重的生命和财产损失.在2005年3月,由日本国土资源部的河流局、公共建设部、交通运输部联合签署的"大坝抗震安全评估方法(草案)"中指出:土石坝抗震性能分析主要是评估坝体动力分析中的滑动变形.评估方法基于技术和经验的判据,即不发生滑动变形的地震导致的沉降量约等于将来的固结沉降,并小于由滑移
Ilisu水电工程位于土耳其东南部Anatolian区的Tigris河上,与同一河上的其他综合水电站工程相连,是最重要的一个,主要用于发电.该工程由国家水利工程总局(DSI)开发,土耳其政府组织对供水和用水负责.对于该工程的研究始于20世纪50年代.工程最终设计和招标于1982年完成.在Ilisu村庄附近,Tigris河水位将抬高130 m,形成一个装机容量为1200 MW的水电站.135 m高的
堆石坝填筑施工完成投入运行后,坝体变形一般会延续较长的时间。用作为导致堆石坝长期变形的主要原因之一,日渐受到关注。本文结合两河口水电站工程,采用大型高压三轴蠕变试验机,对堆石料蠕变特性进行了试验研究,探讨了堆石的蠕变机理和规律,提出了蠕变的计算模型,并对蠕变模型参数的影响因素及其取值进行了分析.研究表明,两河口水电站堆石料的轴向和体积蠕变特性可以用幂函数ε=a(t/the)b来描述。
在寒冷地区采用沥青混凝土面板防渗,沥青混合料的配合比设计和现场摊铺施工同温暖地区具有显著差异,沥青混凝土的低温冻断性能是影响工程成败的关键因素.本文以呼和浩特抽水蓄能电站上库沥青混凝土工程为依托,介绍了寒冷地区水工沥青混凝土面板配合比设计及现场施工的关键技术问题,初步探讨了水工沥青混凝土低温施工的可行性,以资类似工程借鉴.在寒冷地区,防渗层一般需要采用改性沥青,而改性沥青的私性较大,掺量较多,在施