Dropped Pronoun Recovery in Chinese Conversations with Knowledge-enriched Neural Network

来源 :第十八届中国计算语言学大会暨中国中文信息学会2019学术年会 | 被引量 : 0次 | 上传用户:ninikao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Dropped pronoun recovery,which aims to detect the type of pronoun dropped before each token,plays a vital role in many applications such as Machine Translation and Information Extraction.Recently,deep neural networks have been applied to this task.Though promising improvements have been observed,these methods recover dropped pronouns from the limited context in a small-size window and lack common sense to connect the referred entity to a proper pronoun.In this paper,we propose a knowledge-enriched neural attention framework for Chinese dropped pronoun(DP)recovery.A structured attention mechanism is used to capture the semantics of DP referents from the wider context.External knowledge,which consists of a knowledge base and a hierarchical pronoun-category assumption,is also incorporated in our model to provide pronoun classification information of referred entity and contextual dependency degree.Results on three different conversational genres show that our approach achieves a convincing improvement over the current state of the art.
其他文献
Distant supervision is an effective way to collect large-scale training data for relation extraction.To better solve the wrong labeling problem accompanied by distant supervision,some methods have bee
会议
性别偏见是社会学研究的热点.近年来,机器学习算法从数据中学到偏见使之得到更广泛的关注,但目前尚无基于语料库的方法对文本数据中职业性别偏见的研究.该文基于标记理论,利用BCC和DCC语料库,从共时和历时两个层面考察了63个职业的性别无意识偏见现象.首先,以调查问卷的形式调研了不同性别和不同年龄段的人群对63个职业的性别倾向,发现和BCC语料库中多领域的职业性别偏见度呈显著的正相关.然后从共时的角度,
Aspect-based sentiment analysis(ABSA)aims at identifying sentiment polarities towards aspect in a sentence.Attention mechanism has played an important role in previous state-of-the-art neural models.H
This present study aims to investigate the colligational structures in China English.A corpus-based and comparative methodology was adopted in which three verbs of communication(discuss,communicate an
Answer selection(AS)is an important subtask of question answering(QA)that aims to choose the most suitable answer from a list of candidate an-swers.Existing AS models usually explored the single-scale
In recent years,machine reading comprehension is becoming a more and more popular research topic.Promising results were obtained when the machine reading comprehension task had only two inputs,context
Most of the current man-machine dialogues are at the two end-points of a spectrum of dialogues,i.e.goal-driven dialogues and non goal-driven chitchats.Document-driven dialogues provide a bridge betwee
Natural language inference(NLI)is a challenging task to determine the relationship between a pair of sentences.Existing Neural Network-based(NN-based)models have achieved prominent success.However,rar
In this paper,we present a neural model to map structured table into document-scale descriptive texts.Most existing neural net-work based approaches encode a table record-by-record and generate long s
Word embeddings have a significant impact on natural lan-guage processing.In morpheme writing systems,most Chinese word em-beddings take a word as the basic unit,or directly use the internal structure