论文部分内容阅读
针对智能车辆机动性运动的定位问题提出了一种基于平方根Unscented卡尔曼滤波的GPS/DR组合定位方案和算法。基于组合定位模型状态方程线性和观测方程非线性的特点,提出了将标准平方根卡尔曼滤波同SR-UKF相结合的非线性滤波算法.该算法在时间更新阶段减少了滤波算法的运算量,提高了滤波算法的效率.仿真结果表明:与基于EKF的非线性滤波算法相比,本算法具有更高的滤波精度和更好的滤波稳定性,同时,同通用SR-UKF相比又具有较高的运算效率,完全适合于资源有限的车载导航系统.