【摘 要】
:
Winner-take-all (WTA) competition is an important computational principle in the brain, by which neurons can compete with each other for activation.Through configuring its network parameters, the WTA
【机 构】
:
Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine,
论文部分内容阅读
Winner-take-all (WTA) competition is an important computational principle in the brain, by which neurons can compete with each other for activation.Through configuring its network parameters, the WTA neural network can achieve various dynamic characteristics of attractors underlying many visual cognitive functions, such as decision making, working memory and hysteresis in visual perceptions.Therefore, physical implementations of the WTA network with the N-methyl-D-aspartate receptors (NMDARs) in silicon is of benefit to design elementary neuromorphic modules of these visual cognitive functions.In our work, we developed a WTA circuit with NMDARs with desired dynamics through the dynamical system approach of circuit synthesis according to the two-variable version of a biophysical plausible WTA model.Through comparing results from circuit simulations in Cadence and theoretical analysis in dynamical systems approach, we demonstrated that the WTA circuit we build could (1) implement decision task and reproduce ramping neural activities observed in the electrophysiological recording in monkcys experiments as attractor dynamics of the WTA model predicts, (2) reproduce the sustained activities and the limited memory capacity during working memory tasks, (3) achieve hysteresis observed in the visual perception and operatefollowing the theoretical analysis for the WTA model.Neuromorphic implementation of these visual cognitive functions in the WTA circuit will be benefit to develop new generation of technologies that carry out brain-like artificial intelligence while maintaining remarkable energy efficiency.
其他文献
在生态相似的种群中,对于有限资源的竞争行为一直是生物学家、生态学家等普遍关心的一个重要问题。从生物的角度来看,在现实世界中,种群系统不可避免地受到环境噪声的影响,例如,种群出生率往往会受到环境噪声的干扰。因此,为子更加准确地描述这样的系统,一些学者引入子Brown运动,由此而产生的Brown运动驱动的竞争Lotka-Volterra模型的解的性质被大量研究,包括全局正解的存在性与唯一性、持久性,灭
本文研究了神经复杂网络的突变及其控制。时空混沌系统FitzHugh-Nagumo和Panfilov被选作为神经社团网络的神经元和突变基因。在空间和时间上,利用时空混沌的特性,给出了经历基因突变后的复杂神经网络的结构变换。选取多个耦合的时空混沌FitzHugh-Nagumo作为复杂神经网络的神经元,选取多个时空的Panfilov作为突变神经元,两者相互耦合构成神经社团网络。基于backsteppin
In the mammalian brain, fear memory is associated with fear conditioning-induced synaptic plasticity in the amygdala.An experiment in mice demonstrated that the paraventricular nucleus of the thalamus
Previous studies and experiments have been showed that elevated K+ concentration in the extracellular space can induce pathological discharge activities, such as epilepsy [1].The inward rectifier pota
Using a systematic computational approach and in vivo experiments, Cotterell et al.challenge a 40-year-old model that explains large-scale embryonic patterns in terms of long-range gradients.Instead,
Theta burst stimulation (TBS)和low frequency stimulation (LFS)是突触可塑性的两种常用的诱导方式.脑区间基于theta,gamma节律的振荡耦合可能有助于脑区间的信息交流及突触可塑性.因此,了解TBS及LFS刺激对脑区间基于LFPs的振荡耦合长时程影响将有助于我们更好的理解突触可塑性与振荡耦合之间的关系.因此,本研究主要探究LTP与LTD对
非线性时间序列分析是研究神经系统动力学的有效方法之一,特别是对脑电信号的信息提取,分析判别神经系统工作状态及有效控制有着重要作用,而确定最大李雅普诺夫指数被认为是甄别系统状态最有效的方法。本文对现存的几种从非线性时间序列确定最大李雅普诺夫指数的方法进行了综述,并对作者所发展的采用相空间重构技术确定最大李雅普诺夫指数的原理及方法进行了详细阐述,确定低维嵌入可以导致计算最大李雅普诺夫指数出现平台,进而
Objective: A large number of cognitive impairment and imaging studies found that attentional systems includes both bottom-up and top-down control, i.e., ventral attention network (VAN) and dorsal atte
系统的吸引子往往代表长期的状态,而其往往是稳定的。即吸引子附近的初始点出发的轨迹会落在该吸引子上。这种动力学概念被广泛应用到神经网络处理信息当中。在脉冲耦合振子系统当中,系统出现一些不满足稳定性定义的吸引子。最极端的是,一个局部具有鞍性的不动点,却在相空间会有非零测度的初始点最终落在该鞍点上。这种被称为不稳定不动点[1-2]。这发展出了有别与基于吸引子的信息计算模型,刺激通过鞍点的异宿切换来反映。
Multiple cell classes have been found in the primary visual cortex, but the relationship between cell types and spatial summation has seldom been studied.Parvalbumin-expressing inhibitory interneurons