【摘 要】
:
Energy-efficient and environmentally friendly solid-state light sources, in particular GaN-based light emitting diodes (LEDs), are currently revolutionizing an increasing number of applications, and b
【机 构】
:
National Taiwan University, Institute of Photonics & Optoelectronics and Department of Electrical En
论文部分内容阅读
Energy-efficient and environmentally friendly solid-state light sources, in particular GaN-based light emitting diodes (LEDs), are currently revolutionizing an increasing number of applications, and bring apparent benefits to vast areas of development, such as lighting, communications, biotechnology, imaging, and medicine.
其他文献
氮化镓(GaN)基激光器将半导体激光器拓展到紫、蓝、绿波段,作为新型可见光波段激光光源正带动大色域的激光显示、高亮度激光照明、高分辨激光制版印刷、高密度激光存储等领域的技术革新,是国际上的研究热点.我们对GaN激光器的材料生长、结构设计和器件物理进行了系统的研究.
Wide-bandgap GaN-based power transistors and rectifiers are capable of delivering superior performance (e.g.lower on-state loss, higher off-state breakdown, higher switching frequency, higher operatin
1、MOCVD方法生长高质量GaN系薄膜材料这里重点介绍在SiC衬底上MOCVD方法生长GaN薄膜的实验研究.SiC与GaN的晶格失配仅为3%左右,在SiC衬底上生长的GaN质量比蓝宝石衬底的更好,且SiC具有导热、导电性能,是制备大功率半导体照明LED的理想衬底,Cree公司已经宣称开发出效率达276 1m/V的白光LED.
LED产业的高速发展需要降低成本和提高良率来推动,高性能、智能化、规模化的新型设备将更具优势.随着LED性能的不断提升,MOCVD设备面临一系列的挑战,包括更低的设备硬件和维护成本,更少的反应源消耗和工艺生长时间,更高的外延芯片产能和良率等.
ZnO光电材料是新型节能光电子工业的基础材料,在未来白光照明产业中有可能发挥重要作用.对于研究ZnO光电材料在节能光电子器件中的应用来说,结构的可控生长是实现实际应用的基础,p型掺杂是推动其应用于光电器件的关键问题.
Metal Organic Chemical Vapor Phase Deposition (MOCVD) has become the major technology for volume manufacturing of semiconductor structures, including light emitting diode (LED), laser diode (LD),high
随着光电子技术的不断进步和国家"十城万盏"等半导体照明示范工程的快速推进,发光二极管的应用领域和市场逐步扩大.通过近几年的努力,我国半导体照明产业发展有了很大的进步,但是在高光效、高可靠性、低成本大功率LED外延和芯片技术上相比于国外还存在一定的差距,是我国急需重点发展的研究方向之一.
The epitaxial structure of the GaN-based light-emitting devices was grown on sapphire substrates using metalorganic chemical vapor deposition (MOCVD) system.The phosphor was coated on the GaN-based li
过去十年,由于三维GaN纳(微)米柱的优异性质及在纳米光子学和光电子学中的潜在应用,GaN纳米柱的研究引起了广泛的兴趣.对比传统的二维层状GaN结构,三维纳(微)米结构具有很多优点.首先,由于横向的小尺寸效应,生长纳米柱中的线位错密度会大大降低,直至零位错状态.
自上世纪90年代以来GaN基宽禁带化合物半导体材料和器件得到了迅猛的发展,但由于缺少GaN同质衬底材料,一直以来GaN基材料都是生长在异质衬底上.目前,商品化的GaN基材料和器件大多采用蓝宝石衬底.与蓝宝石衬底相比,Si衬底具有成本低、尺寸大、质量高、导热导电好、制备工艺成熟等优势,且有望在Si衬底上实现光电器件集成.