【摘 要】
:
本文证明实轴同胚的共形自然延拓是极值拟共形延拓;圆周同胚的共形自然延拓是调和延拓,纯正了Douady-Earle延拓。
论文部分内容阅读
本文证明实轴同胚的共形自然延拓是极值拟共形延拓;圆周同胚的共形自然延拓是调和延拓,纯正了Douady-Earle延拓。
其他文献
This paper first defines a class of analytic functions which is associated with the Dziok-Raina operator and related closely with the class of uniformly con
For a two-dimensional Brieskorn complete intersection singularity,we give concrete descriptions of the maximal ideal cycle and the fundamental cycle on the
In this talk,we will introduce some recent results on Landau-type theorems for harmonic mappings,biharmonic mappings,p-harmonic mappings or log-p-harmonic m
Let h(≠0)be a holomorphic function on a domain D.Let F be a family of meromorphic functions on D,all of whose zeros have multiplicity at least 3,and the mu
In this article,we will discussRiemann-type boundary-value problem of automorphic polyanalytic function,which is connected with a rotation group.By the deco
We study the convolutions of generalized harmonic right half-plane mappings with other special harmonic mappings,such as right half plane mappings,harmonic
本文研究了如下问题:给定右半平面一列复数列,以该复数列为零点的指数型整函数在虚轴上的增长性有什么特征? 并给出了完整的解答.这是对P.Malliavin和L.A.Rubel关于给定一列
本文在一定条件下证明了p-Lapcian算子的特征问题的弱解在p大于或等于2时以集合收敛的意义连续依赖于边界数据,在p小于或等于2时以点收敛的意义连续依赖于边界数据。
Given a circle packing on the Riemann sphere $hat{mathbb{C}}$,we prove that its quasiconformal deformation space can be naturally identified with the produc
Let M be a compact complex manifold with a strongly pseudoconvex complex Finsler metric F,we define a natural projection of complex horizontal Laplacian on