Transmission electron microscopy of glassy materials-Challenges,concerns and solutions

来源 :第七届中国功能玻璃学术研讨会暨新型光电子材料国际论坛 | 被引量 : 0次 | 上传用户:yizeswing
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  The recent progress in aberration-corrected optics in (scanning)transmission electron microscope ((S)TEM) provides intense electron probe, which allows an ultra-high spatial (e.g.sub-(A)) and energy (e.g.~30meV) resolutions for imaging and analysis with previously incomparable signal-to-noise ratio.In reality,however, real resolutions are limited by the effect of beam damage in many materials,especially in glassy (non-metallic) materials.Irradiation by an intense and energetic electron beam may create atomic displacement, the definition of damage, on surface and in bulk.Quantitative result obtained by exposing to such intense electron probe must be therefore interpreted with cautions.Despite its importance understanding of damage mechanism, especially in glassy materials, has not been as highly valued as it should be.In this talk, I will discuss challenges and concerns when (S)TEM techniques are applied to glassy materials.Unlike in metallic materials, damage in glassy materials is caused mainly by the induced electric field.This highly localized electric field is produced by the accumulated charges due to the excitations and ionizations by incident electrons.The distribution and strength of the induced electric field will be analyzed and discussed in detail, in both TEM and STEM illumination modes.Measured in a soda silicate glass, the maximum strength of electric field induced by a 2 nA STEM probe can reach as high as 1011 ~ 1012 V/m in the [SiO4] tetrahedral networks.Cations (glass modifiers), ranging from light alkali, e.g.Na+, to very heavy rare earth ions, e.g.Eu3+, in the [SiO4] tetrahedral network can be then displaced easily, causing beam damage and introducing artifacts in quantification analysis.By contrast, the [SiO4] network itself is apparently robust under such a strong electric field.The survival of the [SiO4] network in the electric field will be interpreted based on its local symmetry and bonding characteristics.The ultimate goal of this presentation is to find solutions to these challenges and concerns.How can we apply (S)TEM for glassy materials? A model is introduced based on the thorough investigation of damage dependence of experimental conditions and theoretical analysis.Two types of thresholds are discovered in this model.One is the threshold of current density of electron beam, below which the induced electric field is not strong enough to cause damage.The other is the threshold of exposure time for a given beam current density.The damage only occurs when the exposure is longer than this threshold.Therefore, to reduce or even eliminate beam damage in glassy materials, either a small current density or short exposure is necessary.
其他文献
《人人健康》编辑部的同志们的我写一篇有关养生保健的心得体会,我很高兴地接受了。因为我如今已年届八旬,但仍步履尚健、思维清晰、逻辑有序,还能承担一些社会工作,这与我
黄宗洛在舞台上跑了大半辈子龙套,到退休才涉足影视圈,七十有五还仍然活跃在剧组里。他的家离北京的市中心有几十里,呼机、手机一个没有,家里只有电话,所以要找他拍戏,还真得有点儿
染料敏化太阳能电池是一种基于纳米结构光电功能材料的光电转换器件,主要由工作电极、电解质和对电极三部分组成.其中,工作电极是由导电基底、纳米晶氧化物和光敏染料构成,电
全国最大的风筝产地山东省潍坊市东约13公里处,有个310户人家的村子,名叫杨家埠,它就是潍坊风筝的主要产地,也是全国最大的风筝生产基地。他们制造的各式风筝,五彩缤纷。那最小的,每个火
作为太阳能电池中一种重要的材料,硅微/纳米结构具有独特的光学、电学性能,在新型太阳能电池设计中有很大的应用优势,如作为减反射材料、光吸收材料、电荷传输材料等;同时硅
会议
规整有序的TiO2一维纳米结构阵列,如TiO2纳米管阵列、TiO2纳米线阵列、TiO2纳米棒阵列等,用作染料敏化太阳电池(DSCs)的光阳极可以为光生电子提供连续直接的路径,提高电子的
会议
教师遭遇课堂突发事件,考验教师的综合素质和应变能力;能对课堂上发生的突发事件进行妥善处理.使教学活动有序地进行,不仅体现出教师驾驭课堂的水平,甚至可以转化为不可多得
本文在文献的基础上,完善和推广了从色散波方程求光纤非线性传输方程的方法,建立了适用于任意剖面结构单模光纤、任意模式的非线性传输方程,用逆散射法求得了孤子的一般解析
新课程改革呼唤优质高效的历史课堂.在历史课堂中,我努力做到利用多媒体技术,提高课堂教学效益;鼓励学生动手实践,培养创新精神;加强历史与现实的联系优化历史课堂.
鸡西矿业集团公司张辰煤矿西三采区3
期刊