面向对象影像分析的城镇建筑物三维空间变化信息提取

来源 :第三届全国高分辨率遥感数据处理与应用研讨会暨地理国情监测技术与应用研讨会 | 被引量 : 0次 | 上传用户:goeas
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  城镇建筑物监测是城镇扩展空间格局监测的主要内容。城镇建筑物监测,既要快速提取个体和片区建筑物的三维空间信息,又要精确反映其变化情况。一般的建筑物信息提取,由于基于像素的影像提取局限、作业流程复杂以及过程人为参与等因素,存在辨析地物难、处理周期长、提取精度不高等问题。
其他文献
地理国情监测,就是综合利用全球导航卫星系统(GNSS)、航空航天遥感技术(RS)、地理信息系统技术(GIS)等现代测绘地理信息技术,利用各时期测绘成果档案,对自然、人文等地理要素进行动态和定量化、空间化的监测,并统计分析其变化量、变化频率、分布特征、地域差异、变化趋势等,形成反映各类资源、环境、生态、经济要素的空间分布及其发展变化规律的监测数据、图件和研究报告等,从地理空间的角度客观、综合展示国情
HJ-1B 自2008 年9 月6 日发射以来,广泛应用于环境灾害监测方面,在地理国情方面的监测业务化系统中发挥着关键作用,同时其理论算法研究为高分辨率对地观测系统的载荷配置提供了切实参考。
森林在生态环境保护领域具有重要作用。研究表明,基于单树级别来获取森林结构信息是实现其高精度和高精细目标的重要方法途径之一,因而单树结构信息的提取成为地理国情遥感监测领域需要研究解决的问题之一。
以淮河中游水域约6500 平方公里的范围为研究区域,开展基于环境小卫星CCD 影像的水体快速提取方法的研究。本文综合利用环境小卫星CCD 影像的第4 谱段和归一化差异植水体指数(NDWI)特征,采用决策树分类方法提取水体。
居民区是人类生活的集聚地,及时准确地获取居民区信息对于动态监测城镇变化和进行城镇规划具有重要的意义。当前快速发展的高分辨率对地观测技术为居民区信息的获取提供了新的数据源。
与中、低分辨率遥感图像相比,高分辨率遥感图像提供了更丰富的地表信息:地物的几何结构更加明显,空间布局更加清晰,纹理和尺寸等特征更加精细,这些特征使得利用空间局部模式来建模高分辨率遥感图像的场景成为可能。
目前高光谱影像分类成为遥感界众多专家学者关注的重点问题之一。由于监督分类方法获取标记样本产生巨额代价,且依赖标记样本的选择质量,而仅采用未标记样本的非监督分类精度又不理想。
随着遥感技术的发展,遥感影像的空间分辨率得到了很大提高,IKONOS,QuickBird等高分辨率遥感影像已经成为大比例尺地图更新的最主要数据源之一。高分辨率遥感传感器一般可以同时获取多光谱影像和全色影像,其中多光谱影像可以提供丰富的光谱信息,但其空间分辨率比较低;全色影像的空间分辨率比较高,但其光谱分辨率很低。
地理国情监测已经成为当前时期我国测绘工作的主要使命.其工作主要分为:1.实现遥感影像与已有地理信息数据的自动配准;2.对新旧地理信息数据进行比较,对各种地理信息要素进行自动变化检测并完成地理信息数据的更新;3.对变化检测结果进行统计分析,形成地理国情信息报告.
在建筑物密集、高度变化剧烈的城市测绘中,采用传统摄影测量方案容易造成立体影像之间较大的辐射和几何差异,使得相关匹配处理异常困难。小基高比立体观测模式可获取地物目标近同时、交会角非常小的立体像对,影像相关程度很高,可较好地解决上述难题。