【摘 要】
:
硬質薄膜常被用於提高零部件的摩擦學性能。但在設計和選擇薄膜材料和製備方法時,往往忽視基體材料與薄膜材料的性能匹配。研究表明,硬質薄膜與基體材料性能上的差異會在很大程度上影響薄膜的摩擦學行為。在一些情況下,硬質薄膜會導致基體更容易發生塑性變形而降低膜基系統的整體性能,即所謂的弱化效應。本文介紹弱化效應的基本概念,利用物理氣相沉積方法在不同的基體上製備了硬質薄膜,試驗研究了膜基材料的性能匹配對薄膜摩擦
【机 构】
:
清华大学摩擦学国家重点实验室 北京100084
【出 处】
:
第十二届海峡两岸薄膜科学与技术研讨会
论文部分内容阅读
硬質薄膜常被用於提高零部件的摩擦學性能。但在設計和選擇薄膜材料和製備方法時,往往忽視基體材料與薄膜材料的性能匹配。研究表明,硬質薄膜與基體材料性能上的差異會在很大程度上影響薄膜的摩擦學行為。在一些情況下,硬質薄膜會導致基體更容易發生塑性變形而降低膜基系統的整體性能,即所謂的弱化效應。本文介紹弱化效應的基本概念,利用物理氣相沉積方法在不同的基體上製備了硬質薄膜,試驗研究了膜基材料的性能匹配對薄膜摩擦學行為的影響。利用計算機模擬,研究了不同的膜基結構對膜基系統應力的影響規律。在此基礎上,針對膜基系統的設計原則開展了討論。
其他文献
目前内燃机活塞环—缸套摩擦副润滑分析中,活塞环与缸套之间的润滑状态一般假设为充分润滑或固定状况的贫油润滑,不是通过对实际润滑油膜形成情况的分析确定.本文以一多缸四行程内燃机为研究对象,基于润滑油流量以及控制体体积变化方程,建立活塞环—缸套间润滑油的流动模型,进行了不同进口处润滑油膜供给量对活塞环—缸套摩擦副润滑特性的影响分析.结果表明,活塞环进口处的润滑条件对活塞环—缸套摩擦副的润滑性能有显著影响
为了更大程度地提高石油钻探井场的安全、迎合未来高效能源和减员增效发展趋势,合理使用和维护石油钻探井场的各种设备至关重要.本文简要介绍了Modbus通信协议,重点阐述了石油钻探井场设备实现远程监测监控功能的软硬件技术方案.在JCC数据采集装置、DZ81综合电力仪表和JCZZ集控系统的基础上采用Modbus现场总线,编制了通信程序,实现了石油钻探井场各设备的远程监测监控.
通过离心式压气机特性图谱分析,建立了压气机通流特性模型来表征节流线.基于压气机通流特性模型,针对车用柴油机典型工况建立了性能指标函数,从而指导增压系统匹配方案的确定.针对典型双涡轮增压系统,明确了增压系统匹配流程,建立基于压气机通流特性的匹配方法.针对某型6缸增压柴油机不同工况的性能参数指标,进行了相继增压系统和可调两级增压系统匹配计算,分别进行了大小增压器和髙低压级增压器选型.通过搭建柴油机相继
API ENGINE OIL STANDARDS Almost 70 years setting engine oil performancestandards–API 1509,Engine Oil Licensing and Certification System– API 1525,Bulk Oil Testing,Handling and Storage Guidelines– API
分析了不同化学结构的乳化剂,介绍了科莱恩产品的油溶性、乳化能力、钙皂分散性、泡沫性能、硬水稳定性、润滑性和热稳定性。
从I-V特性分析结果显示,AlSiN薄膜随着氮氩比例增加,瞬间电流随之提高:而靶材有效面积瞬间功率密度,从2618W/cm2增加至3410W/cm2。从XRD、TEM、XPS分析结果显示,AISiAl薄膜随着氮氩比例增加,薄膜结构从含些奈米铝矽结晶金属氮化物转变为c-AiN与a-Si3N4的奈米复合薄膜,最后转为非晶结构。从奈米压痕分析结果显示,随着氮氩比例增加到45%,硬度从1.1GPa上升至2
文章阐述了光伏发电用透明导电膜的制备工艺研究现状,进行了本组Zn0透明导电膜以及本组柔性透明导电膜研究,提出了下一步工作展望。
本实验成功使用浆料火焰喷涂法与前驱液火焰喷涂法制备出固体氧化物燃料电池用YSZ薄膜。在乾式火焰喷涂中可以发现当乙炔流量最大、表面移动速率最快时有最低的孔隙率,分别为10.2%和1O%。而在浆料火焰喷涂中发现乙炔流量越大,YSZ涂层呈现网状结构,也有基材裸露的问题,增加喷涂趟数可增加涂层厚度,但过厚会有剥落的问题。在前驱液火焰喷涂中得到乙炔流量大薄膜会呈现网状结构,也会有较多的白色的析出物。
Content CIGS thin film solar cell MoSe2 formation Impact of MoSe2 Conclusions CIGS thin film solar cell Solar cell type Nanorod Solar,TiO2/dye·mini size cells·in research
Solar cells 1st generation:Si Monocrystalline silicon Polycrystalline silicon 2nd generation:Thin film CIGS GaAs CdTe 3rd generation:Organic Dye-sensitized solar cells Polymer solar cells