强冲击下材料动态损伤效应的多尺度数值模拟研究

来源 :第十五届全国物理力学学术会议 | 被引量 : 0次 | 上传用户:HongJuZhang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  金属材料的动态损伤效应研究,如层裂、微层裂和绝热剪切带等,是材料损伤研究中重要的研究内容, 多年来也吸引了大量的科学家的研究兴趣。材料强冲击下动态损伤效应是一个典型的多尺度行为,其主要机制多需要从材料原子尺度的微结构出发,研究微结构到宏观动态材料失效行为的演化行为。因此,理解材料在微介观尺度的动态行为是帮助建立宏观损伤物理模型的重要基础。本报告将介绍我们课题组近年来针对金属单晶和多晶材料在强冲击下动态力学效应一系列研究结果。针对绝热剪切带的形成与传播,从分子动力学与有限元结合的多尺度数值模型开展研究,建立了基于原子相互作用的超弹晶体本构模型,揭示了绝热剪切带是一个包含相变、位错、微裂纹和空洞萌生与扩展的过程;针对强冲击下的层裂和微层裂效应,发现材料的层裂和微层裂的主要微观机制与冲击成孔相关,如成核、孔洞生长和级联过程。多晶晶界对材料经典层裂和卸载熔化过程有较大影响,微层裂效应仅是在材料处于局部熔化的条件下发生,包括冲击熔化和卸载熔化条件下。
其他文献
  整形激光驱动准等熵压缩是高效的物质动态压缩方式,是开展材料高压压缩特性研究的重要手段。本报告系统介绍了近年来基于神光Ⅲ原型激光装置开展的整形激光直接驱动准等熵
  本文采用基于密度泛函理论的第一性原理系统地研究了0-300 GPa下Zr-H体系的稳定配比、晶体结构及其性质.常压下只存在ZrH、ZrH2,随着压力的增加,ZrH、ZrH2开始分解,形成
  高压可以产生常压环境下所不具有的新的物理效应,例如:电子的重新分布或离域化,以及原子化学特性的变化.在这里,经第一性原理计算预测出一个新颖的氮化铝AlN5化合物:空间群
  化学键的断裂是含能材料材料化学反应的初始条件和边界条件,分子被激发后振动能量的局域化的方向和路径是指征初始反应键的关键。本报告将介绍目前常用的超快选键激发与
  冲击加载下炸药分子结构特征、动力学响应、及点火反应机理问题是物理力学研究领域一个重要课题。该研究工作对揭示高温高压高应变条件下CHNO原子间相互作用规律具有重要
  通过开展平板冲击实验,本工作对比研究了19-94 GPa冲击压力范围内YAG单晶、多晶透明陶瓷的光学透明性变化及力学响应。发现单晶和多晶陶瓷在49 GPa处仍能保持良好的透明
  陶瓷等脆性材料在冲击波领域有着重要应用,如高强度陶瓷可作为防弹装甲[1]、透明陶瓷可作为光学窗口、铁电陶瓷可作为脉冲电源[2]。但在较强冲击下,陶瓷材料的力、光、电等
  延性金属的破坏主要是由于金属材料内部的孔洞成核、增长和合并导致。但是孔洞的弹塑性变形特性与材料的微观和介观结构密切相关。所以深入认识延性金属材料的力学行为需
  As an important method to synthesize new materials and a clean way to adjust the lattice constants,pressure has known to be a powerful tool to study the phy
  动态加载或冲击深刻地改变和影响着材料的物理性质和力学响应特性,表征这一剧烈变化的一个重要参数是应变率。高的应变率加载会导致缺陷和位错的产生、融合或撕裂晶粒、并