【摘 要】
:
A Bayesian network is a graphical model which analyzes probabilistic relationships among variables of interest.It has become a more and more popular and effective model for representing and inferring
【机 构】
:
Jiangsu Frontier Electric Technology Co.Ltd.,Nanjing 211102
【出 处】
:
第六届中国计算机学会大数据学术会议
论文部分内容阅读
A Bayesian network is a graphical model which analyzes probabilistic relationships among variables of interest.It has become a more and more popular and effective model for representing and inferring some process with uncertain information.Especially when it comes to the failure of uncertainty and correlation of complex equipment,and when the data is big.In this paper,we present an incremental approach for sparse Bayesian network structure learning.In order to analysis the correlation of heating load multidimensional feature factor,we use Bayesian network to establish the relationship between operating parameters of the heating units.Our approach builds upon previous research in sparse structure Gaussian Bayesian network,and because our project requires us to deal with a large amount of data with continuous parameters,we apply an incremental method on this model.Experimental results show that our approach is the efficient,effective,and accurate.The approach we propose can both deal with discrete parameters and continuous parameters,and has great application prospect in the big data field.
其他文献
When smartphones,applications(a.k.a,apps),and app stores have been widely adopted by the billions,an interesting debate emerges: whether and to what extent do device models in uence the behaviors of t
社交网络的蓬勃发展彻底改变了人们的社交行为,也促进了交叉学科的研究.在社交网络中挖掘情感社区,可应用于公共健康、舆情监测等领域.本文作为首个面向中文社交网络进行情感社区检测的研究,以新浪微博为平台建立一种情感社群检测框架,首先融合微博情感表情特征和情感词典,提出基于朴素贝叶斯算法的分类模型SL-SE-NB(Naive Bayes Based Semi-lexicon and Semi-emoji)
Traditional Belief-Rule-Based Ensemble learning methods usually integrate all sub-BRB systems that are trained to obtain better results than a single belief-rule-based system.As the number of BRB syst
现有的文献大多是对位置隐私保护算法的研究,对于位置隐私保护算法的隐私性度量的研究相对缺乏.为此,文中以贪心法的位置K-匿名算法(Greedy-based Location K-anonymous Algorithm,GLKA)为例,提出位置隐私泄露的度量方法.该方法以KL距离(Kullback-Leibler divergence)为基础,将攻击者的背景知识融入其中,用以度量匿名区域中用户位置隐私
Community search plays an important role in complex network analysis.It aims to find a densely connected subgraph containing the query node in a graph.However,the most existing community search method
As the number of scientific publication is getting larger and larger,scientific impact prediction has become an urgent need.However,traditional scientific impact prediction,which is mainly based on lo
社交网络中存在大量营销、招聘等垃圾信息以及无实质内容的短文,为话题建模工作带来很多干扰,更严重影响社交网络方面的学术研究及商业应用.因此,本文提出一种基于SVM-kNN模型的半监督话题噪声过滤方法.该方法融合了支持向量机(Support Vector Machines,SVM)和k近邻(k-Nearest Neighbor,k-NN)算法,在SVM计算得到超平面的基础上使用kNN算法在局部范围内迭
当前各类主流网络平台的发展呈现出“社交平台内容化、内容平台社交化”的趋势,用户分化也日趋明显,出现了拥有大规模粉丝的超级节点.内容和社交相结合、用户角色分化等异构(heterogeneous)化的特点使得传统社交网络分析方法遇到了挑战,针对这些特性,本文提出了一种基于社交关系的兴趣挖掘模型,结合矩阵分解和标签传播算法,将用户分为内容发布者和普通用户两类并分别提取和计算兴趣话题,实现了在大规模异构网
扩展置信规则库(Extended belief rule base,EBRB)在推理过程中需要遍历规则库中所有的无序规则,当规则库很大时EBRB系统的推理效率不高.鉴于此,本文提出使用局部敏感哈希(Locality Sensitive Hashing,LSH)算法对置信规则构建索引.首先用LSH算法为规则库中的所有规则生成特殊的局部敏感哈希值,该哈希值能尽量保持原始规则之间的相似度,因此相似的规则
In recent years,approximate nearest neighbor search methods based on hashing have received considerable attention in large-scale data.There are plenty of new algorithms have been created and applied t