【摘 要】
:
自建立基于离子液体(ILs)的液相微萃取(LPME)技术以来,其在色谱样品前处理中得到了迅速发展,解决了普通有机溶剂萃取效率低和溶剂延迟影响等问题,加之阴阳离子可以灵活调
【机 构】
:
农业部水产品质量安全检测与评价重点实验室 中国水产科学研究院黄海水产研究所,山东青岛,266071
论文部分内容阅读
自建立基于离子液体(ILs)的液相微萃取(LPME)技术以来,其在色谱样品前处理中得到了迅速发展,解决了普通有机溶剂萃取效率低和溶剂延迟影响等问题,加之阴阳离子可以灵活调节设计等特性,离子液体成为液相微萃取技术的新型萃取剂。传统的悬挂单滴液相微萃取技术,在萃取过程需要对样品溶液搅拌,离子液体液滴较易脱落,且液滴大小受限,影响了萃取的稳定性和重现性。本文采用 1-辛基-3-甲基咪唑六氟磷酸盐[OMIM]PF6作为萃取剂,通过在萃取瓶内添加环形萃取平台,将离子液体滴加到平台上,改变了液滴的悬挂状态,克服了重力影响,液滴能长久的存在于萃取体系内部。通过优化液相微萃取装置,改进液相微萃取模式,与传统悬挂单滴微萃取相比,极大的提高了萃取液滴的稳定性,并与液相色谱仪器(荧光检测器)联用,提高对海水样品中痕量多环芳烃类(PAHs)的检测能力。图 1 所示,经离子液体液相微萃取后,15 种多环芳烃得到了有效富集,且基线分离较好。
其他文献
纤维蛋白原(Fibrinogen)是大量存在于血液中的凝结蛋白它是纤维蛋白的前体,也是血液粘稠度和血液凝结的重要影响因素。纤维蛋白原(Fibrinogen)α链C端的605-629氨基酸组成的分
中心粒是中心体和鞭毛的重要组成部分。细胞分裂过程中中心粒的异常复制,将可能导致染色体的异常分离,引发严重的后果。虽然人们已经意识到了中心体异常与遗传性疾病之间的因果
氧化石墨烯(GO)是强氧化、高度亲水的片状材料。它的平面结构上所具有的大量功能基团使得它与众多的生物分子能够通过共价、非共价、静电吸附的方式结合在一起。同时具备
环境监测、食品安全、公共安全和疾病诊断亟需发展快速、现场和廉价的可视化分析新方法。这里我们报道以纳米光学效应为基础的荧光及拉曼开关的设计与可视化分析方法。在
表面等离子体共振传感(SPR)与成像(SPRi)是一类免标记和可模拟生物过程的分子识别研究方法,其中SPR已经成为生物分子识别作用的典型测定方法但通量不足.SPRi不仅具有SPR
以具有优良光学性质的贵金属纳米材料作为传感基底,结合特异性识别元件的纳米光学传感技术在新型污染物检测方法中受到广泛关注。贵金属金银纳米粒子在可见光区具有非常
贻贝(Mussel)具有极强的水下黏附能力,其分泌的黏附蛋白能够黏附在包括聚四氟乙烯(PTFE)在内的几乎所有基底材料上。 受贻贝水下黏附机理的启发,通过仿生贻贝聚多巴胺功
目的:急性肾损伤(Acute kidney injury,AKI)是临床上常见的并发症,具有高发病率和死亡率的特点。近年来研究揭示了AKI引发的多器官功能衰竭是其死亡率高居不下的重要原因。本
金纳米棒(goldnanorods,GNRs)的形貌决定了其独特的光学性质,在紫外-可见-近红外(UV-vis-NIR)光谱上存在横向和纵向两个表面等离子共振(surfaceplasmonresonance,SPR)峰,其中纵向
生物成像对于实现无创、实时和可视化监测,细胞和分子水平上生物过程的分析,分子水平上疾病发生机制及特征的理解、诊断和治疗具有重要的作用。长余辉发光纳米材料具有超长