Numerical and experimental studies of liquid breakup at the surface of turbulent jets

来源 :13th International Conference on Liquid Atomization and Spra | 被引量 : 0次 | 上传用户:chenaabb1111
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Primary breakup can be regarded as one of the least developed model components for simulating and predicting liquid jet breakup. This paper presents a numerical investigation of primary breakup of a planar turbulent liquid jet in still air at standard conditions for jet exit Reynolds numbers of 10000 and 23000 and Weber number is varied within the range [102–107]. Due to the limitation of direct numerical simulation (DNS) to moderate Reynolds numbers, the onedimensional turbulence (ODT) model is used to simulate the jet with high lateral resolution. ODT permits affordable high resolution of interfaces and single-phase property gradients which are essential for capturing the local behavior of the breakup process. ODT is a stochastic model simulating turbulent flow evolution along a notional 1D line of sight by applying instantaneous maps to represent the effect of individual turbulent eddies on property profiles. ODT has recently been used by the authors to reproduce the main features of an experimentally determined regime diagram for primary jet breakup. In this study we apply the model to the high Re number regime and compare to new experimental data.
其他文献
  Air assisted atomizers for aircraft engine applications often include a prefilmer lip, where the atomization of the liquid fuel takes place. Recently, the t
会议
  In this investigation, methods used to generate combined drop size distributions, from discrete measurement points, are developed and evaluated. A hydraulic
  An investigation of the vapor phase concentration is performed using the Infrared Absorption technique on a gas/droplet flow in a heated real-scale environm
  The present work examines the deformation and breakup of droplets impulsively accelerated by air flow at various conditions including the bag breakup and th
  The injector nozzle geometry was obtained by using the X-ray CT imaging technology, effects of the microburr on the near-field and far-field spray character
  Knowing the droplets temperature is of great importance in spray-assisted combustion devices as it directly affects the droplet evaporation rate. This infor
  Characterizing droplets in spray processes is of high interest in many areas, such as car painting or spray drying. The Time Shift technique provides an eff
  In direct-injection spark-ignition (DISI) engines, the fuel is injected directly into the cylinder, resulting in the spray impingement on the piston and cyl
  The problem of droplet impact into a thin film h*= 0.43 is studied using a new technique called Brightness- Based Laser Induced Fluorescence. Droplet speeds
  Swirl effervescent atomizer consists of a combined atomization mechanism of swirl and effervescent atomization which benefited each atomization. Unfortunate