Boundary blow up solutions for fractional elliptic equations

来源 :International Conference on Variational Methods(ICAM-3)(2012 | 被引量 : 0次 | 上传用户:ding89629
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  In this talk we discuss existence of boundary blow up solutions for some fractional elliptic equations including (-△)αu + up = f in Ω,u = g on Ωe,lim x∈Ω,x→(6Ω) u(x) = ∞,where Ω is a bounded domain of class C2,α ∈ (0,1) and the functions f: Ω→ R and g: RN Ω → R are continuous.We obtain existence and boundary behavior of solutions under different hypothesis on f and g.We also prove uniqueness of positive solutions.This work is in collaboration with Huyuan Chen and Alexander Quaas.
其他文献
本文分析了波分复用光传送网中光通路层 (OCh)的管理需求 ;研究了两种 OCh开销传送技术 :副载波调制结合光监控信道 (OSC)开销传送技术和 OCh帧结构开销传送技术 ,分析对比了
  The central configurations of n point masses are those configurations x = (→r1,…,→rn) which admit periodic rigid motions when s ubmitted to newtonian att
会议
会议
请下载后查看,本文暂不支持在线获取查看简介。 Please download to view, this article does not support online access to view profile.
期刊
人到老年,追求长寿乃是情理之中的事。有的老人叹息自身每况愈下,说:“年轻时像动物,中年后是植物,到了晚年成了活物。”这语言确是形象风趣。诚然,人的活力不可能同年龄成正
随着信息技术的革命和数字化时代的到来 ,数字图书馆作为一个正在生长的新生事物出现了 ,它有着截然不同于传统图书馆的特征.数字图书馆如今已成为国际高科技竞争中新的制高
  In order to understand the linear stability of symmetric periodic orbits in Hamiltonian systems,we build up a trace formula for the linear Hamiltonian syste
会议
会议
  In this talk,I will discuss the existence and asymptotic behavior of traveling wave solutions to Allen-Cahn equation with fractional Laplacians where the do
会议