【摘 要】
:
We are concerned with the important system of nonlinear Schr(o)dinger equations with linear and (or) nonlinear couplings which arises from Bose-Einstein con
【机 构】
:
AMSSofChineseAcademyofSciences,China
【出 处】
:
2016年非线性偏微分方程和变分方法及其应用研讨会(Workshop on Nonlinear PDEs and Cal
论文部分内容阅读
We are concerned with the important system of nonlinear Schr(o)dinger equations with linear and (or) nonlinear couplings which arises from Bose-Einstein condensates, we prove phase segregation results of the limit competition case, we use variational methods to prove the existence of ground state and bound state solutions of the systems, and use bifurcation theory to get structure of positive solutions. We give some partial symmetry results of positive solutions by Morse index and obtain existence and uniqueness of positive solution via synchronized solution techniques.
其他文献
In this talk,unper some proper conditions,I will consider some propertiesabout intermittency of the following stochastic heat equation(e)t u(t,x)=1/2△u(t,x
We establish the existence and uniqueness of the solution for a class of reflected backward stochastic differential equations with time delayed generator,in
We consdier a class of skew diffusion processes,and the processes may be theoretically regarded as an extended class of the well-known reflected processes.I
In this talk,we will first present a couple of examples which call for the combined study of stochastic filtering and control.We will survey some methods fo
In the present talk,I introduce a numerical scheme for the price of a barrier option when the price of the underlying follows a diffusion process.The numeri
A dynamic control of a matching queue model with renewal arrival processes is considered in this paper.Once the matching decision has been made,matched cust
The model of non-intersecting squared Bessel processes is an interesting example of determinantal point processes,and can also be treated as a noncentral co
In this talk, we introduce the notion of the H(o)rmander index without the nondegenerate condition. Then we give a formula of to calculate the index. As app
In this talk, we start with a general linear Hamiltonian system ut = JLu in a Hilbert space X { the energy space. The main assumption is that the energy fun
In this talk, I shall present some recent results on the bubbling solutions for the Chern-Simons-Higgs equations. The results include the non-coexistence of