Evaluation of Mechanical Properties on Components of Heavy and Chemical Facilities Operated under Hi

来源 :第十届全国无损检测学术年会 | 被引量 : 0次 | 上传用户:l00ok100
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  In recent years, the heavy and chemical facilities have been extended its service life through the life assessment and maintenance to reduce the investment because of the economic depression.However, the materials of the facilities operated under high temperature and high pressure is degrading the mechanical properties as increased the service times, so the fracture risk is increased.Therefore, it is necessary to quantitatively evaluate the mechanical properties as well as the nondestructive inspection to decide the operation of the facilities.And, the mechanical properties should be compared to the design values.In general, the non-destructive inspection such as ultrasonic testing, radiography testing, eddy current testing and replication could use the detection and sizing the flaw in the materials.However, the mechanical properties could not be quantitatively evaluated with the general NDT methods.Engineering Critical Assessment (ECA) and Fitness for Purpose for the facilities integrity assessment needs the quantitative information of the flaw and mechanical properties.The instrumented indentation technique(IIT) is a method to quantitatively evaluate the mechanical properties of the materials of the facilities without damage.For the facilities constructed with steel, which is over the design life time and is applied with the repeated load in high temperature and corrosion environment, the mechanical properties snch as yield strength and ultimate tensile strength are evaluated with IIT.And, the operating or not the facilities is decided with the IIT data.
其他文献
采用传统的固相反应法,制备了xZnFe2O4/(1-x)PZN-PZT系列的多铁性复合陶瓷,并研究了不同组分对该复合材料的结构、介电、铁电以及磁性的影响.研究表明:尖晶石结构的ZnFe2O4有助于稳定该材料的四方相结构;复合材料的介电、铁电性质强烈地依赖于材料的组分,当x=2.5(质量分数,%)时,介电常数、剩余极化强度以及矫顽场都达到最大值;此外,复合材料的磁性与纯的ZnFe2O4陶瓷有显著的不
采用传统的固相法合成了(1-x)Ba4LiNb3O12-xBaTiO3 (x=0~0.40)钙钛矿陶瓷.通过XRD,Raman,SEM以及电学测试对材料的结构和性能进行表征.XRD和Raman结果表明,Ti4+不利于六方相的稳定,一旦出现,部分或全部六方相即转变为立方相.随着x增大,陶瓷的介电常数(εr)逐渐增加,品质因数(Q×f)逐渐降低,频率温度系数(τf)逐渐增加.立方相陶瓷与六方的相比,有
采用固相反应法制备了(1-x)(K0.49Na0.51)0.98Li0.02(Nb0.77Ta0.18Sb0.05)O3-x(Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 [(1-x)KNLNTS-xBCZT,x=0~0.02]无铅压电陶瓷,系统研究了BCZT掺杂量对陶瓷电性能的影响.结果表明:BCZT的适量掺入有效地降低了陶瓷的介电损耗,使晶粒细化,增加了陶瓷致密度.随着BCZT掺杂量
BaTiSi2O7具有独特的TiO5四方单锥,有利于抑制离子极化弛豫引起的介电损耗.采用传统氧化物混合法制备了BaTiSi2O7陶瓷.X射线衍射和Raman散射光谱分析表明,该陶瓷具有纯BaTiSi2O7相,其结构中含有TiO5四方单锥结构.同时,高频电学分析表明,随着烧结温度的增加,其相对介电常数在0.1 kHz~1 GHz频率范围内为8~10,介电损耗在10-4左右,有望作为低损耗微波介质材料
采用燃烧合成结合准热等静压技术(SHS/PHIP)成功制备了大尺寸Ti3AlC2块体陶瓷材料,确定了用自蔓延准热等静压(SHS/PHIP)法制备大尺寸Ti3AlC2块体陶瓷材料的最佳原料配比.利用X射线衍射(xRD)、扫描电镜(SEM)手段对产物进行了分析,XRD结果表明反应产物中只含有Ti3AlC2陶瓷相,SEM分析发现制备的产物为层片状组织结构.而且由于层状显微结构的存在,使得该材料的性能比较
以废瓶罐玻璃为原料,采用浸没沉淀相转化/烧结技术制备了钠钙硅玻璃平板膜,采用X射线光电子能谱分析、热重分析、X射线衍射分析以及扫描电镜研究了钠钙硅玻璃平板膜的制备工艺.X射线光电子能谱分析结果表明,所用的瓶罐玻璃为钠钙硅玻璃,热分析结果表明,400~500℃之间玻璃膜中的有机粘结剂被完全烧失,X射线衍射结果表明,经过800~900℃煅烧后平板膜中的玻璃发生结晶,形成SiO2和Na2Ca3Si6O1
以氧化锡锑(Sb掺杂含量为20 at%)和SnO2纳米复合粉体为原料,采用放电等离子体烧结法(SPS)和退火工艺处理后制备了高致密高导电的氧化锡锑(ATO)陶瓷.研究了SPS烧结工艺和后期退火工艺对ATO陶瓷靶材结构与性能的影响.结果表明:采用SPS烧结技术,当升温速率为100℃/min、压力为40 MPa时,在900~1000℃烧结并保温3 min时可获得致密度大于94%的ATO陶瓷,但由于烧结
采用固相反应法,制备了Al3+掺杂的钴铁氧体CoFe2-xAlxO4 (x=0.000,0.012,0.023,0.035,0.069,0.092)系列样品.从XRD的结果分析,钴铁氧体磁性离子间跃迁距离随x的增加而降低,表明Al3+掺杂进入了尖晶石晶格,拉曼光谱的结果验证了这一结论.当x≤0.069,随着x的增大,钴铁氧体直流电阻率增加约2个数量级;当x>0.069,直流电阻率开始下降.微量Al
采用传统的固相烧结法合成了0.2Pb(Zn1/3Nb2/3)O3-0.8Pb(Zr0.5,Ti0.5)O3(1-x)(Ni51.5Mn25Ga23.5)x复合体系陶瓷.XRD结果表明,随着Ni51.5Mn25Ga23.5(NMG)掺入,Ni51.5Mn25Ga23.5先溶于0.2Pb(Zn1/3Nb2/3)O3-0.8Pb(Zr0.5,Ti0.5)O3中,后NMG量超过5%不溶于复合体系中,使得0
采用高温固相法合成了Mn2+单掺杂、Mn2+,Ga3+(Ho3+)共掺杂以及Mn2+,Ga3+,Ho3+三掺杂的γ-Zn3(PO4)2.在Mn2+单掺杂的样品中,发射峰位于620 nm,该样品在紫外光照射样品后,发现存在红色余辉,余辉中心与荧光中心相同.当Mn2+,Ga3+ (Ho3+)共掺杂时,样品同时存在峰值位于620 nm的红光发射和峰值位于507 nm的绿光发射,紫外光照射样品后,样品存在