Global Stability of the Rarefaction Wave of the Vlasov-Poisson-Boltzmann System

来源 :2014年非线性偏微分方程的演化国际会议 | 被引量 : 0次 | 上传用户:sunashelly
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
In this talk,we consider the nonlinear stability of the rarefaction waves of the Vlasov-Poisson-Boltzmann system with slab symmetry in the case where the electron background density satisfies an analogue of the Boltzmann relation.We allows that the electric potential may take distinct constant states at both far-fields.The rarefaction wave whose strength is not necessarily small is constructed through the quasineutral Euler equations coming from the zero-order fluid dynamic approximation of the kinetic system.We prove that the local Maxwellian with macroscopic quantities determined by the quasineutral rarefaction wave is time-asymptotically stable under small perturbations for the corresponding Cauchy problem on the Vlasov-Poisson-Boltzmann system.The main analytical tool is the combination of techniques for the viscous compressible fluid with the self-consistent electric field and the reciprocal energy method based on the macro-micro decomposition of the Boltzmann equation around a local Maxwellian.Both the time decay property of the rarefaction waves and the structure of the Poisson equation play a key role in the analysis.This is a joint work with Professor Renjun Duan.
其他文献
We consider the Cauchy problem for first-order quasilinear partially dissipative hyperbolic systems with a small parameter.Typically,the small parameter is the
会议
会议
单克隆抗体是目前靶标最明确的肿瘤治疗药物,临床应用安仝性好,效果显著,具有巨大的市场。但是应用抗体进行治疗费用昂贵,一个疗程约需20万元,一般患者经济上难以承受。为此,
Motivated by recent physics papers describing rules for natural network formation,we study an elliptic-parabolic system of partial differential equations propos
会议
能源危机与日俱增,环境污染日益加重,对新型清洁能源的开发与利用的需求已迫在眉睫。利用农业秸秆生产燃料乙醇,既可解决清洁能源问题又可利用农业废弃物,是实现可持续发展的
In this talk,we present our new results on stability of oscillatory traveling waves for a class of reaction-diffusion equations with time-delay.The typical mode
会议
量子点(QDs)具有光漂白门槛高、耐光性好、化学性质稳定并且光致发光能力强等优点,因此它作为特异性靶向探针被广泛应用于多种检测和生物传感检测中。然而,在实际应用中,分离和回收这种有毒量子点是十分困难的,这给传感检测和生物技术应用等制造了很大的麻烦。在本文中,我们首先采用水相回流法和微波辅助照射法合成了不同尺寸的荧光量子点,并优化了各种反应条件。其中水相回流法制得的量子点粒径较为均一,而微波辅助照射
We study a reaction diffusion equation ut= uxx +f(u)(X∈[O,h(t)])with Robin boundary condition u(O,t)= bux(O,t).When f is an unbalanced bistable nonlinearity we
会议
We investigate local and global existence,blowup criterion and long time behavior of classical solutions for a system of PDEs derived from the Keller-Segel mode
会议
We consider the weak solutions to the the rotating shallow water systems in 2D,and we show the existence of infinitely many global-in-time admissible bounded we
会议