螺杆真空泵转子在热载荷和机械载荷作用下的有限元分析

来源 :中国真空学会2014年年会 | 被引量 : 0次 | 上传用户:xvgpzz6h
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  螺杆真空泵工作过程中,转子在力载荷和热载荷的共同作用下发生形变。若转子与泵腔冷配合间隙过小,不足以补偿转子形变,会引起机器卡死现象;相反若转子与泵腔冷配合间隙过大,运转时的泄露量偏大,导致泵的抽气性能下降。本文对转子在力载荷和热载荷作用下的形变进行了分析研究,为螺杆真空泵如何合理确定冷配合间隙提供理论指导。本研究以180L/s 单头内凹等螺距转子作为研究对象,建立了转子的三维实体模型。考虑到对流换热系数随压强等参数的变化而变化,研究时将转子分为四段,计算出每段的当量温度和对流换热系数,施加在模型对应位置上,利用有限元方法进行模拟计算。首先对实心转子和轴心通水转子在热载荷作用下的温度场分布及形变情况进行了研究,结果表明轴心通水结构对降低转子温度效果明显,同时轴心通水转子轴向热形变量为实心转子轴向热形变量的六分之一,轴心通水转子径向热形变量为实心转子径向热形变量的十分之一,轴心通水结构很大程度上降低了转子的热膨胀量。其次对扭矩、离心力、气体压力等机械载荷单独和共同作用下的转子形变量进行了分析,结果表明在所有机械载荷当中由压力引起的形变量最大,由扭矩引起的形变量最小,仅为压力引起形变量的九分之一。
其他文献
随着能源的日益耗竭和环境污染的加剧,人们开始寻找清洁的、可再生的能源.超级电容器是一种实用的、环境友好的能源存储设备,具有高功率密度、长循环稳定性和快速充放电等特
会议
  To meet the urgent unmet needs in advanced dosage forms of increasing biologic medicines,we developed two platform technologies for formulating proteins and
会议
  The spin dependent transport across ferromagnet/semiconductor interfaces depends critically on their structure and electronic properties.Interracial reactio
  It is well known that MOSFET on SiGe-on-insulator(SGOI)substrate has advantages of high carrier mobility and suppression of parasitic capacitance and leakag
In this talk,processing challenges of CMOS integration of FinFETs with all-last gate stacks and solutions by using novel materials are presented.It is found tha
会议
  Since germanium(Ge)has a quasi-direct band gap of 0.8 eV,it is a promising material for fabricating on-chip optoelectronic devices.Although Ge based individ
It has been generallyrecognized that chromophore aggregation quenches fluorescence process.We have observed an opposite phenomenon termed"aggregation-induced em
会议
Development of polymeric materials with advanced properties is of great academic values and has high-tech implications.Polymers loaded with fluorophores are exc
会议
  The extracellular matrix (ECM) mimicking properties of electrospun polymer nanofibers afford their use as an ideal scaffold material for differentiation of
  具有化学识别能力的亚纳米分辨识别与成像是物理、化学、生物、材料等领域长期追求的目标和梦想.最近,我们利用自主研发的低温超高真空扫描隧道显微镜与针尖增强拉曼散射