【摘 要】
:
亚波长声学超构材料近年来吸引了人们越来越多的注意,其最新发展带来了众多声波操控的新方法.声波导是一种基本的声波操控方法,在声学测量、建筑声学、乐器学等领域应用广泛.
【机 构】
:
南京理工大学 理学院,江苏南京 210094
【出 处】
:
中国声学学会2017年全国声学学术会议
论文部分内容阅读
亚波长声学超构材料近年来吸引了人们越来越多的注意,其最新发展带来了众多声波操控的新方法.声波导是一种基本的声波操控方法,在声学测量、建筑声学、乐器学等领域应用广泛.很多实际应用中传递信号的声路径经常是弯曲的,但由于衍射效应,弯曲路径的传统声波导无法实现宽带低损耗的信号传递.这里通过在弯曲波导中排列特殊的各向异性内嵌体实现了低反射效应,其所需的参数分布可根据坐标变换方法计算得到.在准静态近似下分析了单元结构的等效声学参数,发现通过调节内嵌物的结构参数和温度等物理量,可以实现对其等效各向异性质量密度和等效体模量的独立调控,从而拓宽超常材料所能实现的等效参数范围.数值计算结果证明了所设计弯曲波导的宽带低反射特性.
其他文献
孔隙介质声学是应用性很强的一个声学分支,对孔隙介质的研究具有重要的理论意义和应用价值.弹性波在流体饱和孔隙介质中传播时,其波速受到固体和流体的共同影响.孔隙介质是一
Murnaghan和Landau等人很早就研究了固体介质中的非线性声学问题,得到了各向同性介质中的非线性声波方程.在一些问题中为了简化,常忽略掉非线性项的存在,视其为线性方程,然而
液体中的微小空化核在超声波的作用下被激活,成长为肉眼可见的气泡,这就是声空化.所形成的气泡即为空化泡.空化泡在声波作用下发生膨胀、塌缩、反弹、溃灭等一系列动力学过程
近年来,弹性波在声子晶体中的传播特性引起了国内外许多学者的研究.声子晶体是由两种或者两种以上不同成分或者构型单元周期性排列组成的复合介质或结构.弹性波在声子晶体中
在工业生产领域,因工艺水平的限制,金属器材在加工过程中可能会产生一些内部缺陷,如气孔、裂缝或空腔等.这些缺陷的存在,会严重影响金属材料的性能,可能会在实际应用中产生一
近年来,随着人们对周期结构中波动问题的深入研究,完整周期结构中的Bragg共振问题已经研究得日趋成熟.周期结构中的Bragg共振作用会使频谱分裂产生Bragg禁带,而对应频率的声
互相关不同检波器记录的同一个声源激发的波场响应,可以重建检波器之间的格林函数,如果在互相关前将检波器记录的全波场分解为相对于检波器平面的上下行波,就可以提高重建的
在声单向整流器件的研究中,声子晶体的禁带特性常被用于实现声波的反向截止,在此基础上结合不同的正向导通机制便可实现声能流的非对称传输效应.目前,基于声子晶体的正向导通
传统的贝塞尔波束发生器主要是由锥透镜为主,事实上,这样的轴棱锥透镜实现了将平面波转化为锥面波束.无论在微波还是在声波段,理想的平面波较难产生,并且由于轴棱锥表面阻抗
地壳岩石常常具有非均匀性.弹性波传播时会引起孔隙流体的非定常流动进而导致弹性波频散和衰减.介观尺度波动诱导的流体运动被认为是引起地震波速度频散和衰减的主要原因之一