烷基链长度对有机小分子光伏性能的影响研究

来源 :中国化学会第29届学术年会 | 被引量 : 0次 | 上传用户:awards
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  以齐聚噻吩为给电子基团,PM为吸电子基团,合成了一系列可溶液加工的给受体小分子;通过调节烷基链的长度(-C8H17,-C6H13,和 -C4H9),系统研究了分子热学性质、光学性质、能级结构及光伏性能随烷基链长度变化规律.DSC测试表明:基于齐聚噻吩的这些有机小分子均展现了较强的结晶性,且分子的结晶温度随烷基链的变短而升高.UV-Vis吸收光谱研究发现:分子的吸收光谱在最大吸收峰值和吸收范围上并没有发生明显的变化,但是其光吸收系数随烷基链的缩短逐渐升高,表明分子间的堆积效应得到明显的改善.电化学测试表明:分子的HOMO能级并没有发生明显的变化,说明烷基链长度从-C8到-C4的变化对分子共轭效应并没有明显的影响.以8TPMC4为给体的光伏器件展现了最高的光电转换效率3.18%,表明缩短烷基链长度可以有效的改善材料的光伏性能.
其他文献
聚多糖纳米晶包括纤维索纳米晶、淀粉纳米晶等,以其来源的丰富性、造价得可控制性、可再生性、优异的力学性能、纳米尺度的形态及长径比的多样性等优点,而被广泛应用于制备各
  在有机半导体领域,为了提高电子的注入或者收集,通常采用低功函的金属例如Ca/Al做阴极.然而这些低功函金属在空气中不稳定,容易和空气中的水和氧反应[1]. 我们合成了含有
会议
  有机太阳能电池,尤其是本体异质结器件,经过研究人员近20年来在供体聚合物和受体材料开发、器件工程和器件结构设计等方面的深入研究,其光电转化效率得到重大突破,其中单
会议
  我们报道一种基于金红石二氧化钛纳米阵列,CH3NH3PbI3-xClx型钙钛矿敏化的太阳能电池,其中金红石二氧化钛纳米阵列是通过简单的水热法制得.得到的约500 nm厚度的阵列随后
会议
2014年2月21日上午,天兆猪业召开了“天兆猪业北京总部媒体座谈会”。此次会议在北京市顺义区的天兆猪业北京总部举行,天兆猪业高级副总裁谭瑾女士、高级顾问荆继忠先生、北
  Adiketopyrrolopyrrole(DPP)molecule with fully-planar molecular geometry,3,6-bis{5-[(ethylfuran-2-carboxylate)-2-yl]thiophene-2-yl}-2,5-bis(2-ethylhexyl)pyrr
会议
  软物质的电子及物理性能通常具有很大的可调节性,这和材料内部的微纳米结构有很大的联系。材料的基本性能和形貌之间的复杂相互作用可以使用一系列测试表征手段来测量。然
会议
  目前在染料敏化太阳能电池中各类敏化剂中都使用酸性基团作为锚定结构,例如羧基磺酸基等,使之能够吸附在半导体氧化物表面。但是酸性基团在半导体表面的水解、质子化作用
会议
  有机光电子器件中需要低功函数的电极用于电子的注入或收集.聚乙烯亚胺(PEI,结构式如图1左所示)等可大幅降低大多数导体(金属、金属氧化物、PEDOT:PSS、石墨烯等)表面的功
  有机-无机杂化太阳电池结合了有机聚合物材料良好的柔韧性、制备可控性和无机纳米材料优异的光电性能[1].一维有序 TiO2纳米棒阵列以其高的电子迁移率和比表面积成为制备
会议